METHODS: In this study, 0.05 mM KA was administered at dose of 10 µL/100 g body weight, at a rate of 10 µL/min, to induce spinal injury by intra-spinal injection between the T12 and T13 thoracic vertebrae. In this protocol, detailed description of a dorsal laminectomy was explained to expose the spinal cord, following intra-spinal kainic acid administration at desired location. The dose, rate and technique to administer kainic acid were explained extensively to reflect a successful paraplegia and spinal cord injury in rats. The postoperative care and complication post injury of paraplegic laboratory animals were also explained, and necessary requirements to overcome these complications were also described to help researcher.
RESULTS: This injury model produced impaired hind limb locomotor function with mild seizure. Hence this protocol will help researchers to induce spinal cord injury in laboratories at extremely low cost and also will help to determine the necessary supplies, methods for producing SCI in rats and treatments designed to mitigate post-injury impairment.
CONCLUSIONS: Kainic acid intra-spinal injection at the concentration of 0.05 mM, and rate 10 µL/min, is an effective method create spinal injury in rats, however more potent concentrations of kainic acid need to be studied in order to create severe spinal injuries.
DATA SOURCE: Six major databases were searched from inception till June 2015: MEDLINE, CINAHL, EMBASE, PsychInfo, SPORTDiscus, and Cochrane Center Register of Controlled Trials.
STUDY APPRAISAL AND SYNTHESIS METHODS: Two reviewers independently rated methodological quality using the modified Downs and Black Scale and extracted and synthesized key findings (i.e., participant characteristics, study design, physical function and fitness outcomes, and adverse events).
RESULTS: Eight of 276 studies met the inclusion criteria, of which none showed high research quality. Four studies assessed physical function outcomes and 4 studies evaluated aerobic fitness as outcome measures. Significant improvements on these 2 outcomes were generally found. Other physical or fitness outcomes including body composition, muscular strength, and balance were rarely reported.
CONCLUSIONS AND IMPLICATIONS OF KEY FINDINGS: There is weak evidence supporting aquatic exercise training to improve physical function and aerobic fitness among adults with spinal cord injury. Suggestions for future research include reporting details of exercise interventions, evaluating other physical or fitness outcomes, and improving methodological quality.
MATERIALS AND METHODS: Six participants with SCI were recruited for a pilot study to investigate the exercise intensity of selected exergames (Move Tennis, Move Boxing, and Move Gladiator Duel) for the potential to improve health. Issues relating to exergaming for individuals with SCI were identified, and a Move Kayaking exergame was conceived using relevant design processes in an iterative manner. These processes included the following: participant needs and requirements, system requirements (hardware), system architecture (physical and operational views), and integration and verification of the finished system. Emphasis was given to operational and physical designs of the Move Kayaking exergame.
RESULTS: Move Boxing, Move Gladiator Duel, and Move Kayaking achieved moderate intensity exercise, while Move Tennis only achieved exercise of low intensity based on participants' metabolic equivalent. However, all four exergames achieved at least moderate intensity based on individuals' ratings of perceived exertion (RPE).
CONCLUSION: The intensity classification while playing Move Boxing, Move Tennis, Move Gladiator Duel, and Move Kayaking, using RPE, reported adequate exercise intensities prescribed by exercise guidelines.
AIM: To compare the physiological responses and user preferences between conventional heavy-bag boxing against a novel form of video game boxing, known as exergaming boxing.
DESIGN: Cross-sectional study.
SETTING: Exercise laboratory setting in a university medical center.
POPULATION: Seventeen participants with SCI were recruited, of which sixteen were male and only one female. Their mean age was 35.6±10.2 years.
METHODS: All of them performed a 15-minute physical exercise session of exergaming and heavy-bag boxing in a sitting position. The study assessed physiological responses in terms of oxygen consumption, metabolic equivalent (MET) and energy expenditure between exergaming and heavy-bag boxing derived from open-circuit spirometry. Participants also rated their perceived exertion using Borg's category-ratio ratings of perceived exertion.
RESULTS: Both exergaming (MET: 4.3±1.0) and heavy-bag boxing (MET: 4.4±1.0) achieved moderate exercise intensities in these participants with SCI. Paired t-test revealed no significant differences (P>0.05, Cohen's d: 0.02-0.49) in the physiological or perceived exertional responses between the two modalities of boxing. Post session user survey reported all the participants found exergaming boxing more enjoyable.
CONCLUSIONS: Exergaming boxing, was able to produce equipotent physiological responses as conventional heavy-bag boxing. The intensity of both exercise modalities achieved recommended intensities for health and fitness benefits.
CLINICAL REHABILITATION IMPACT: Exergaming boxing have the potential to provide an enjoyable, self-competitive environment for moderate-vigorous exercise even at the comfort of their homes.
NEW METHOD: In this study the presence of reactive astrocytes and NG2 proteoglycans was investigated in two ex vivo models of SCI; stab injury and transection injury. Stereological analysis to measure immunohistochemical staining was performed on the scar and injury zones to detect astrocytes and the chondroitin sulphate proteoglycan NG2.
RESULTS: The volume fraction (Vv) of reactive astrocytes and NG2 proteoglycans increased significantly between day 3 and day 10 post injury in both ex vivo models. This data shows how ex vivo SCI models are a useful research tool allowing reduction of research cost and time involved in carrying out animal studies, as well as reducing the numbers of animals used.
COMPARISON WITH EXISTING METHOD: This is the first evidence of an ex vivo stab injury model of SCI and also the first comparison of immunohistochemical staining for injury markers within stab injured and transection injured ex vivo slice cultures.
CONCLUSIONS: The use of organotypic slice culture models provide a simple way to study the cellular consequences following SCI and they can also be used as a platform for potential therapeutics regimes for the treatment of SCI.