Displaying publications 21 - 40 of 73 in total

Abstract:
Sort:
  1. Sadeghi H, Jehu DA, Daneshjoo A, Shakoor E, Razeghi M, Amani A, et al.
    Sports Health, 2021;13(6):606-612.
    PMID: 33583253 DOI: 10.1177/1941738120986803
    BACKGROUND: Poor muscle strength, balance, and functional mobility have predicted falls in older adults. Fall prevention guidelines recommend highly challenging balance training modes to decrease falls; however, it is unclear whether certain modes are more effective. The purpose of this study was to determine whether traditional balance training (BT), virtual reality balance training (VR), or combined exercise (MIX) relative to a waitlist control group (CON) would provoke greater improvements in strength, balance, and functional mobility as falls risk factor proxies for falls in older men.

    HYPOTHESIS: We hypothesized that 8 weeks of MIX will provoke the greatest improvements in falls risk factors, followed by similar improvements after BT and VR, relative to the CON.

    STUDY DESIGN: Single-blinded randomized controlled trial NCT02778841 (ClinicalTrials.gov identifier).

    LEVEL OF EVIDENCE: Level 2.

    METHODS: In total, 64 community-dwelling older men (age 71.8 ± 6.09 years) were randomly assigned into BT, VR, MIX, and CON groups and tested at baseline and at the 8-week follow-up. The training groups exercised for 40 minutes, 3 times per week, for 8 weeks. Isokinetic quadriceps and hamstrings strength on the dominant and nondominant legs were primary outcomes measured by the Biodex Isokinetic Dynamometer. Secondary outcomes included 1-legged stance on firm and foam surfaces, tandem stance, the timed-up-and-go, and gait speed. Separate one-way analyses of covariance between groups were conducted for each outcome using baseline scores as covariates.

    RESULTS: (1) MIX elicited greater improvements in strength, balance, and functional mobility relative to BT, VR, and CON; (2) VR exhibited better balance and functional mobility relative to BT and CON; and (3) BT demonstrated better balance and functional mobility relative to CON.

    CONCLUSION: The moderate to large effect sizes in strength and large effect sizes for balance and functional mobility underline that MIX is an effective method to improve falls risk among older adults.

    CLINICAL RELEVANCE: This study forms the basis for a larger trial powered for falls.

    Matched MeSH terms: Postural Balance
  2. Goh JW, Singh DKA, Mesbah N, Hanafi AAM, Azwan AF
    BMC Geriatr, 2021 04 06;21(1):226.
    PMID: 33823808 DOI: 10.1186/s12877-021-02122-z
    BACKGROUND: Falls are one of the major causes of mortality and morbidity in older adults. However, despite adoption of prevention strategies, the number of falls in older adults has not declined. The aim of this study was to examine fall awareness behaviour and its associated factors among Malaysian community dwelling older adults.

    METHODS: A total of 144 community dwelling older adults (mean age of 70.69 ± 4.3 years) participated in this study. Physical performance were assessed using timed up and go (TUG), gait speed (GS), chair stand and hand grip tests. Fall Awareness Behaviour (FaB) and Fall Risk Assessment Questionnaires (FRAQ) were administered to assess behaviour and fall prevention knowledge respectively.

    RESULTS: Stepwise linear regression analysis showed that the practice of fall awareness behaviour (R2 = 0.256) was significantly associated with being male [95% C.I: 2.178 to 7.789, p 

    Matched MeSH terms: Postural Balance
  3. Azizan NA, Basaruddin KS, Salleh AF
    Appl Bionics Biomech, 2018;2018:5156348.
    PMID: 30116295 DOI: 10.1155/2018/5156348
    Various studies have examined body posture stability, including postural sway and associated biomechanical parameters, to assess the severity effects of leg length discrepancy (LLD). However, various viewpoints have been articulated on the results of these studies because of certain drawbacks in the comprehensive analysis of the effect of variations in LLD magnitude. Therefore, this systematic review was performed to help focus on the current findings to help identify which biomechanical parameters are most relevant, commonly used, and able to distinguish and/or have specific clinical relevance to the effect of variations in LLD magnitude during static (standing) and dynamic (walking) conditions. Several electronic databases containing studies from the year 1983 to 2016 (Scopus, ScienceDirect, PubMed, PMC, and ProQuest) were obtained in our literature search. The search process yielded 22 published articles that fulfilled our criteria. We found most of the published data that we analyzed to be inconsistent, and very little data was obtained on the correlation between LLD severity and changes in body posture stability during standing and walking. However, the results of the present review study are in line with previous observational studies, which describe asymmetry in the lower limbs corresponding to biomechanical parameters such as gait kinematics, kinetics, and other parameters described during static (standing) postural balance. In future investigations, we believe that it might be useful to use and exploit other balance-related factors that may potentially influence body posture stability.
    Matched MeSH terms: Postural Balance
  4. Lai QQ, Gouwanda D, Gopalai AA
    Motor Control, 2023 Apr 01;27(2):179-193.
    PMID: 36216337 DOI: 10.1123/mc.2021-0138
    Balance control is essential for postural adjustment in physical activities. This study investigates the behavior of human postural control and the coordination and adaptation strategy of hip, knee, and ankle when standing on an unstable surface. Twenty participants were recruited. Four different conditions were investigated: a quiet bipedal stance with eyes open and eyes closed, and standing on an unstable surface with eyes open and eyes closed. Other than the joint angle, the standard body sway measures, such as sway area and sway velocity, were computed. A nonlinear time series measure, that is, sample entropy, was used to determine the regularity of the time series and body adaptability to change and perturbation. The results show that the body sway increases as the difficulty increases. This study also confirms the coordination of the hip, knee, and ankle to maintain body balance on the unstable surface by decreasing the joint angle and adopting a lower posture. Even though the individual joint has lower sample entropy value and is deemed to be rigid and less adaptive to perturbation, the postural control exhibits higher sample entropy value, particularly in the anterior-posterior direction, and has the ability to stabilize the body by manipulating the joints simultaneously. These outcomes suggest that an unstable surface not only challenges the human postural control, but also reduces the hip, knee, and ankle adaptability to perturbation, thus making it a great tool to train body balance.
    Matched MeSH terms: Postural Balance
  5. Xu F, Soh KG, Chan YM, Bai XR, Qi F, Deng N
    PLoS One, 2023;18(9):e0287035.
    PMID: 37768953 DOI: 10.1371/journal.pone.0287035
    BACKGROUND: Tai Chi is good for improving the physical fitness of older adults. But few studies have reported the effects of Tai Chi on the postural balance and quality of life of older adults with gait disorders.

    OBJECTIVE: This review aimed to assess the influence of tai chi on postural stability and quality of life in older adults with abnormal gait.

    METHOD: According to the literature retrieval principles, the works published from the inception date to May 2023 were retrieved, including the following databases: PubMed, Scopus, Web of Science, China National Knowledge Infrastructure, EBSCOhost, and Google Scholar. Subsequently, literature screening and quality assessment were performed.

    RESULTS: A total of 16 randomized controlled trials were included in this study, Tai Chi intervention can affect populations with Parkinson's disease (PD), no exercise, mild cognitive impairment (MCI), chronic stroke, sedentary, fear of falling, or history of falling. Postural instability is associated with balance, gait, the Unified Parkinson's Disease Rating Scale Motor Subscale 3 (UPDRS III), mobility, lower body strength, and falls. Only two articles looked at quality of life. The Yang style is the most commonly used in the intervention. Nonetheless, most studies were performed on female participants, hence, more research on older male populations is needed.

    CONCLUSION: Tai Chi intervention benefits postural balance in patients with gait disorders. 12 weeks is the most common intervention period for patients with gait disorders. The frequency of intervention is seven articles twice a week, and the intervention time is about 60 minutes. The Tai Chi intervention methods in this study involve Yang Style, Sun Style, Taoist Tai Chi, and Health Qigong Tai Chi, but the Yang Style Tai Chi intervention is the most widely used.

    Matched MeSH terms: Postural Balance
  6. Mehdikhani M, Khalaj N, Chung TY, Mazlan M
    Proc Inst Mech Eng H, 2014 Aug;228(8):819-23.
    PMID: 25205748 DOI: 10.1177/0954411914547714
    Feet displacement is recognized to be an important element in standing and is also linked to postural instability in elderly people with diabetes. This study investigates standing balance in diabetic patients in four asymmetric feet displacements. Quiet standing balance was investigated using the Biodex Balance System in 18 diabetic patients and compared with 18 control elderly subjects. The four standing conditions, namely, comfortable feet position, preferred feet position with a stance width of 17 cm and 15° angle between the medial borders, feet side by side, and heel side by side with a 30° angle between medial edges of feet were evaluated (i.e. eyes opened, eyes closed). The overall stability was calculated by measuring anterior-posterior and medial-lateral indices in standing conditions. Differences among feet positions were compared using an analysis of variance and the independent t-test. The diabetic patients were unstable in the medial-lateral direction when standing with feet side by side versus heel side by side with a 30° angle between medial edges of feet (p = 0.012 and 0.011, respectively), while in controls the anterior-posterior stability scores between standing in preferred foot position with stance width of 17 cm and 15° angle between the medial borders versus feet side by side, and heel side by side with a 30° angle between medial edges of feet versus preferred foot position with stance width of 17 cm and 15° angle between the medial borders had significant difference (p 
    Matched MeSH terms: Postural Balance/physiology*
  7. Eshraghi A, Maroufi N, Sanjari MA, Saeedi H, Keyhani MR, Gholizadeh H, et al.
    Prosthet Orthot Int, 2013 Feb;37(1):76-84.
    PMID: 22751219 DOI: 10.1177/0309364612448805
    Biomechanical factors, such as spinal deformities can result in balance control disorders.
    Matched MeSH terms: Postural Balance/physiology*
  8. Singh DK, Rajaratnam BS, Palaniswamy V, Pearson H, Raman VP, Bong PS
    Maturitas, 2012 Nov;73(3):239-43.
    PMID: 22884437 DOI: 10.1016/j.maturitas.2012.07.011
    The objective of this study was to quantify the effectiveness of virtual reality balance games (VRBG) to decrease risk and fear of falls among women.
    Matched MeSH terms: Postural Balance*
  9. Singh DK, Rajaratnam BS, Palaniswamy V, Raman VP, Bong PS, Pearson H
    Climacteric, 2013 Feb;16(1):141-6.
    PMID: 22640573 DOI: 10.3109/13697137.2012.664832
    The prospective pre-post control study was designed to evaluate the effect of introducing balance-focused interactive virtual-reality games to community-dwelling older women to improve their agility, balance and functional mobility.
    Matched MeSH terms: Postural Balance/physiology*
  10. Vikram M, Sundaraganesh K, Justine M, Kurup M, Leonard JH
    Clin Ter, 2012;163(5):383-6.
    PMID: 23099965
    The main objective of the study was to investigate postural control impairment in athletes with history of ankle injury by using Balance Error Scoring System (BESS) and to compare with the controls.
    Matched MeSH terms: Postural Balance*
  11. Ibrahim H, Heard NP, Blanksby B
    Percept Mot Skills, 2011 Oct;113(2):491-508.
    PMID: 22185064
    Malaysian students ages 12 to 15 years (N = 330; 165 girls, 165 boys) took the Australian Institute of Sport Talent Identification Test (AIST) and the Balance and Movement Coordination Test (BMC), developed specifically to identify sport talent in Malaysian adolescents. To investigate evidence for general aptitude ("g") in motor ability, a higher-order factor analysis was applied to the motor skills subtests from the AIST and BMC. First-order principal components analysis indicated that scores for the adolescent boys and girls could be described by similar sets of specific motor abilities. In particular, sets of skills identified as Movement Coordination and Postural Control were found, with Balancing Ability also emerging. For the girls, a factor labeled Static Balance was indicated. However, for the boys a more general balance ability labeled Kinesthetic Integration was found, along with an ability labeled Explosive Power. These first-order analyses accounted for 45% to 60% of the variance in the scores on the motor skills tests for the boys and girls, respectively. Separate second-order factor analyses for the boys and girls extracted a single higher-order factor, which was consistent with the existence of a motoric "g".
    Matched MeSH terms: Postural Balance*
  12. Gopalai AA, Senanayake SM, Gouwanda D
    IEEE Trans Inf Technol Biomed, 2011 Jul;15(4):608-14.
    PMID: 21478080 DOI: 10.1109/TITB.2011.2140378
    A force-sensing platform (FSP), sensitive to changes of the postural control system was designed. The platform measured effects of postural perturbations in static and dynamic conditions. This paper describes the implementation of an FSP using force-sensing resistors as sensing elements. Real-time qualitative assessment utilized a rainbow color scale to identify areas with high force concentration. Postprocessing of the logged data provided end-users with quantitative measures of postural control. The objective of this research was to establish the feasibility of using an FSP to test and gauge human postural control. Tests were conducted in eye open and eye close states. Readings obtained were tested for repeatability using a one-way analysis of variance test. The platform gauged postural sway by measuring the area of distribution for the weighted center of applied pressure at the foot. A fuzzy clustering algorithm was applied to identify regions of the foot with repetitive pressure concentration. Potential application of the platform in a clinical setting includes monitoring rehabilitation progress of stability dysfunction. The platform functions as a qualitative tool for initial, on-the-spot assessment, and quantitative measure for postacquisition assessment on balance abilities.
    Matched MeSH terms: Postural Balance/physiology*
  13. Daneshjoo A, Mokhtar AH, Rahnama N, Yusof A
    PLoS One, 2012;7(12):e51568.
    PMID: 23251579 DOI: 10.1371/journal.pone.0051568
    The study investigated the effects of FIFA 11+ and HarmoKnee, both being popular warm-up programs, on proprioception, and on the static and dynamic balance of professional male soccer players.
    Matched MeSH terms: Postural Balance/physiology*
  14. Amir D, Yaszay B, Bartley CE, Bastrom TP, Newton PO
    Spine (Phila Pa 1976), 2016 Jul 15;41(14):1122-1127.
    PMID: 26863257 DOI: 10.1097/BRS.0000000000001497
    STUDY DESIGN: Retrospective review of prospective data.

    OBJECTIVE: To determine if surgically leveling the upper thoracic spine in patients with adolescent idiopathic scoliosis results in level shoulders postoperatively.

    SUMMARY OF BACKGROUND DATA: Research has shown that preoperatively tilted proximal ribs and T1 tilt are more correlated with trapezial prominence than with clavicle angle.

    METHODS: Prospectively collected Lenke 1 and 2 cases from a single center were reviewed. Clinical shoulder imbalance was measured from 2-year postoperative clinical photos. Lateral shoulder imbalance was assessed utilizing clavicle angle. Medial imbalance was assessed with trapezial angle (TA), and trapezial area ratio (TAR). First rib angle, T1 tilt, and upper thoracic curve were measured from 2-year radiographs. Angular measurements were considered level if ≤ 3° of zero. TAR was considered level if ≤ 1 standard deviation of the natural log of the ratio. Upper thoracic Cobb at 2-years was categorized as at or below the mean value (≤ 14°) versus above the mean.

    RESULTS: Eighty-four patients were identified. There was no significant difference in the percentage of patients with a level clavicle angle or TAR based on first rib being level, T1 tilt being level, or upper thoracic Cobb being at/below versus above the mean (P 

    Matched MeSH terms: Postural Balance/physiology
  15. Kamaralzaman S, Budin SB, Mohamed J, Sidi H, Yau M, Sani A
    Sains Malaysiana, 2011;40(8):945–951.
    Neuropathy is a problem often suffered by patients with diabetes mellitus. Types of neuropathy that occur are peripheral neuropathy and autonomic neuropathy. This cross sectional study was conducted to determine the association between duration of diabetes and loss of protective sensation and the association between imbalance and loss of protective sensation among Malay women with diabetes mellitus. Eighty one Malay women with diabetes mellitus, aged 20 to 60 years from three clinics in Hulu Langat District participated in this study. Socio-demographic information were obtained from respondent using a questionnaire. Foot sensory evaluation was conducted using Semmes-Weinstein Monofilament
    grade 5.07. Assessment of balance was done using Timed One-leg Stance. Chi-squared test was used to determine the association between the two variables. Result showed that 56.8% of respondent had loss of protective sensation on at least one foot. While, 17.3% had imbalance while eyes were open and 60.5% experienced imbalance while eyes were closed. However, there was no significant correlation (p<0.05) between imbalance while eyes opened [χ2=3.27, p=0.07] and while eyes close [χ2=0.29, p=0.59]) with loss of protective sensation in at least one foot. Similar result were obtained between duration of diabetes and the loss of protective sensation. (χ2=3.27, p=0.20). Although there was no association between these factors, a screening program should start early to ensure early problems are identified before more severe complications occur.
    Keywords: Diabetes mellitus; imbalance; loss of protective sensation; Malay women
    Study site: Klinik Kesihatan, Hulu Langat, Selangor, Malaysia
    Matched MeSH terms: Postural Balance*
  16. Hébert-Losier K
    J Athl Train, 2017 Oct;52(10):910-917.
    PMID: 28937801 DOI: 10.4085/1062-6050-52.8.02
    CONTEXT:   The Lower Quarter Y-Balance Test (LQ-YBT) was developed to provide an effective and efficient screen for injury risk in sports. Earlier protocol recommendations for the LQ-YBT involved the athlete placing the hands on the hips and the clinician normalizing scores to lower limb length measured from the anterior-superior iliac spine to the lateral malleolus. The updated LQ-YBT protocol recommends the athlete's hands be free moving and the clinician measure lower limb length to the medial malleolus.

    OBJECTIVE:   To investigate the effect of hand position and lower limb length measurement method on LQ-YBT scores and their interpretation.

    DESIGN:   Cross-sectional study.

    SETTING:   National Sports Institute of Malaysia.

    PATIENTS OR OTHER PARTICIPANTS:   A total of 46 volunteers, consisting of 23 men (age = 25.7 ± 4.6 years, height = 1.70 ± 0.05 m, mass = 69.3 ± 9.2 kg) and 23 women (age = 23.5 ± 2.5 years, height = 1.59 ± 0.07 m, mass = 55.7 ± 10.6 kg).

    INTERVENTION(S):   Participants performed the LQ-YBT with hands on hips and hands free to move on both lower limbs.

    MAIN OUTCOME MEASURE(S):   In a single-legged stance, participants reached with the contralateral limb in each of the anterior, posteromedial, and posterolateral directions 3 times. Maximal reach distances in each direction were normalized to lower limb length measured from the anterior-superior iliac spine to the lateral and medial malleoli. Composite scores (average of the 3 normalized reach distances) and anterior-reach differences (in raw units) were extracted and used to identify participants at risk for injury (ie, anterior-reach difference ≥4 cm or composite score ≤94%). Data were analyzed using paired t tests, Fisher exact tests, and magnitude-based inferences (effect size [ES], ±90% confidence limits [CLs]).

    RESULTS:   Differences between hand positions in normalized anterior-reach distances were trivial (t91 = -2.075, P = .041; ES = 0.12, 90% CL = ±0.10). In contrast, reach distances were greater when the hands moved freely for the normalized posteromedial (t91 = -6.404, P < .001; ES = 0.42, 90% CL = ±0.11), posterolateral (t91 = -6.052, P < .001; ES = 0.58, 90% CL = ±0.16), and composite (t91 = -7.296, P < .001; ES = 0.47, 90% CL = ±0.11) scores. A similar proportion of the cohort was classified as at risk with the hands on the hips (35% [n = 16]) and the hands free to move (43% [n = 20]; P = .52). However, the participants classified as at risk with the hands on the hips were not all categorized as at risk with the hands free to move and vice versa. The lower limb length measurement method exerted trivial effects on LQ-YBT outcomes.

    CONCLUSIONS:   Hand position exerted nontrivial effects on LQ-YBT outcomes and interpretation, whereas the lower limb length measurement method had trivial effects.

    Matched MeSH terms: Postural Balance*
  17. Motalebi SA, Cheong LS, Iranagh JA, Mohammadi F
    Exp Aging Res, 2018 1 18;44(1):48-61.
    PMID: 29336735 DOI: 10.1080/0361073X.2017.1398810
    Background/Study Context: Given the rapid increase in the aging population worldwide, fall prevention is of utmost importance. It is essential to establish an efficient, simple, safe, and low-cost intervention method for reducing the risk of falls. This study examined the effect of 12 weeks of progressive elastic resistance training on lower-limb muscle strength and balance in seniors living in the Rumah Seri Kenangan, social welfare home in Cheras, Malaysia.

    METHODS: A total of 51 subjects qualified to take part in this quasi-experimental study. They were assigned to either the resistance exercise group (n = 26) or control group (n = 25). The mean age of the 45 participants who completed the program was 70.7 (SD = 6.6). The exercise group met twice per week and performing one to three sets of 8 to 10 repetitions for each of nine lower-limb elastic resistance exercises. All exercises were conducted at low to moderate intensities in sitting or standing positions. The subjects were tested at baseline and 6 and 12 weeks into the program.

    RESULTS: The results showed statistically significant improvements in lower-limb muscle strength as measured by five times sit-to-stand test (%Δ = 22.6) and dynamic balance quantified by the timed up-and-go test (%Δ = 18.7), four-square step test (%Δ = 14.67), and step test for the right (%Δ = 18.36) and left (%Δ = 18.80) legs. No significant changes were observed in static balance as measured using the tandem stand test (%Δ = 3.25), and one-leg stand test with eyes opened (%Δ = 9.58) and eyes closed (%Δ = -0.61) after completion of the program.

    CONCLUSION: The findings support the feasibility and efficacy of a simple and inexpensive resistance training program to improve lower-limb muscle strength and dynamic balance among the institutionalized older adults.

    Matched MeSH terms: Postural Balance/physiology*
  18. Khan SJ, Khan SS, Usman J, Mokhtar AH, Abu Osman NA
    Proc Inst Mech Eng H, 2018 Feb;232(2):163-171.
    PMID: 29283019 DOI: 10.1177/0954411917750409
    This study aims to investigate the effects of varying toe angles at different platform settings on Overall Stability Index of postural stability and fall risk using Biodex Balance System in healthy participants and medial knee osteoarthritis patients. Biodex Balance System was employed to measure postural stability and fall risk at different foot progression angles (ranging from -20° to 40°, with 10° increments) on 20 healthy (control group) and 20 knee osteoarthritis patients (osteoarthritis group) randomly (age: 59.50 ± 7.33 years and 61.50 ± 8.63 years; body mass: 69.95 ± 9.86 kg and 70.45 ± 8.80 kg). Platform settings used were (1) static, (2) postural stability dynamic level 8 (PS8), (3) fall risk levels 12 to 8 (FR12) and (4) fall risk levels 8 to 2 (FR8). Data from the tests were analysed using three-way mixed repeated measures analysis of variance. The participant group, platform settings and toe angles all had a significant main effect on balance ( p ≤ 0.02). Platform settings had a significant interaction effect with participant group F(3, 144) = 6.97, p 
    Matched MeSH terms: Postural Balance*
  19. Bai X, Xiao W, Soh KG, Agudamu, Zhang Y
    PLoS One, 2023;18(10):e0293483.
    PMID: 37883372 DOI: 10.1371/journal.pone.0293483
    Healthy aging is a global goal to enhance the quality of life for older persons. This study evaluated the benefits of 12-week concurrent brisk walking and Taijiquan. Healthy Chinese women aged 60 years and above were enrolled to the control (n = 26) and intervention (n = 25) groups. Participants in the intervention group engaged in three exercise sessions per week for 12 weeks, whereas control group engaged in free-living activities. Each exercise session consisted of 20-45 minutes of walking and 20-45 minutes of Yang style 24-form Taijiquan. 12-week exercise improved (p < 0.05) the sit and reach test (within-group mean difference: +5.6 cm; Hedges' g = 0.77), handgrip strength (mean difference: +3.1 kg; g = 0.89), arm curl (mean difference: +2.1 repetitions; g = 0.69), chair stand (mean difference: +2.6 repetitions; g = 0.63), and one-legged standing (mean difference: +2.2 seconds; g = 1.07). There was no improvement in the circulatory health, body composition, or life satisfaction. Therefore, this concurrent brisk walking and Taijiquan training, which targets major whole-body muscle groups, could improve aging-critical flexibility, muscular fitness, and balance in older women. The exercise meets the current WHO guideline, is safe to perform, and could be campaigned as a health promotion for older persons.
    Matched MeSH terms: Postural Balance*
  20. Azizan NA, Basaruddin KS, Salleh AF, Sulaiman AR, Safar MJA, Rusli WMR
    J Healthc Eng, 2018;2018:7815451.
    PMID: 29983905 DOI: 10.1155/2018/7815451
    Balance in the human body's movement is generally associated with different synergistic pathologies. The trunk is supported by one's leg most of the time when walking. A person with poor balance may face limitation when performing their physical activities on a daily basis, and they may be more prone to having risk of fall. The ground reaction forces (GRFs), centre of pressure (COP), and centre of mass (COM) in quite standing posture were often measured for the evaluation of balance. Currently, there is still no experimental evidence or study on leg length discrepancy (LLD) during walking. Analysis of the stability parameters is more representative of the functional activity undergone by the person who has a LLD. Therefore, this study hopes to shed new light on the effects of LLD on the dynamic stability associated with VGRF, COP, and COM during walking. Eighteen healthy subjects were selected among the university population with normal BMIs. Each subject was asked to walk with 1.0 to 2.0 ms-1 of walking speed for three to five trials each. Insoles of 0.5 cm thickness were added, and the thickness of the insoles was subsequently raised until 4 cm and placed under the right foot as we simulated LLD. The captured data obtained from a force plate and motion analysis present Peak VGRF (single-leg stance) and WD (double-leg stance) that showed more forces exerted on the short leg rather than long leg. Obviously, changes occurred on the displacement of COM trajectories in the ML and vertical directions as LLD increased at the whole gait cycle. Displacement of COP trajectories demonstrated that more distribution was on the short leg rather than on the long leg. The root mean square (RMS) of COP-COM distance showed, obviously, changes only in ML direction with the value at 3 cm and 3.5 cm. The cutoff value via receiver operating characteristic (ROC) indicates the significant differences starting at the level 2.5 cm up to 4 cm in long and short legs for both AP and ML directions. The present study performed included all the proposed parameters on the effect of dynamic stability on LLD during walking and thus helps to determine and evaluate the balance pattern.
    Matched MeSH terms: Postural Balance*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links