HYPOTHESIS: We hypothesized that 8 weeks of MIX will provoke the greatest improvements in falls risk factors, followed by similar improvements after BT and VR, relative to the CON.
STUDY DESIGN: Single-blinded randomized controlled trial NCT02778841 (ClinicalTrials.gov identifier).
LEVEL OF EVIDENCE: Level 2.
METHODS: In total, 64 community-dwelling older men (age 71.8 ± 6.09 years) were randomly assigned into BT, VR, MIX, and CON groups and tested at baseline and at the 8-week follow-up. The training groups exercised for 40 minutes, 3 times per week, for 8 weeks. Isokinetic quadriceps and hamstrings strength on the dominant and nondominant legs were primary outcomes measured by the Biodex Isokinetic Dynamometer. Secondary outcomes included 1-legged stance on firm and foam surfaces, tandem stance, the timed-up-and-go, and gait speed. Separate one-way analyses of covariance between groups were conducted for each outcome using baseline scores as covariates.
RESULTS: (1) MIX elicited greater improvements in strength, balance, and functional mobility relative to BT, VR, and CON; (2) VR exhibited better balance and functional mobility relative to BT and CON; and (3) BT demonstrated better balance and functional mobility relative to CON.
CONCLUSION: The moderate to large effect sizes in strength and large effect sizes for balance and functional mobility underline that MIX is an effective method to improve falls risk among older adults.
CLINICAL RELEVANCE: This study forms the basis for a larger trial powered for falls.
METHODS: A total of 144 community dwelling older adults (mean age of 70.69 ± 4.3 years) participated in this study. Physical performance were assessed using timed up and go (TUG), gait speed (GS), chair stand and hand grip tests. Fall Awareness Behaviour (FaB) and Fall Risk Assessment Questionnaires (FRAQ) were administered to assess behaviour and fall prevention knowledge respectively.
RESULTS: Stepwise linear regression analysis showed that the practice of fall awareness behaviour (R2 = 0.256) was significantly associated with being male [95% C.I: 2.178 to 7.789, p
OBJECTIVE: This review aimed to assess the influence of tai chi on postural stability and quality of life in older adults with abnormal gait.
METHOD: According to the literature retrieval principles, the works published from the inception date to May 2023 were retrieved, including the following databases: PubMed, Scopus, Web of Science, China National Knowledge Infrastructure, EBSCOhost, and Google Scholar. Subsequently, literature screening and quality assessment were performed.
RESULTS: A total of 16 randomized controlled trials were included in this study, Tai Chi intervention can affect populations with Parkinson's disease (PD), no exercise, mild cognitive impairment (MCI), chronic stroke, sedentary, fear of falling, or history of falling. Postural instability is associated with balance, gait, the Unified Parkinson's Disease Rating Scale Motor Subscale 3 (UPDRS III), mobility, lower body strength, and falls. Only two articles looked at quality of life. The Yang style is the most commonly used in the intervention. Nonetheless, most studies were performed on female participants, hence, more research on older male populations is needed.
CONCLUSION: Tai Chi intervention benefits postural balance in patients with gait disorders. 12 weeks is the most common intervention period for patients with gait disorders. The frequency of intervention is seven articles twice a week, and the intervention time is about 60 minutes. The Tai Chi intervention methods in this study involve Yang Style, Sun Style, Taoist Tai Chi, and Health Qigong Tai Chi, but the Yang Style Tai Chi intervention is the most widely used.
OBJECTIVE: To determine if surgically leveling the upper thoracic spine in patients with adolescent idiopathic scoliosis results in level shoulders postoperatively.
SUMMARY OF BACKGROUND DATA: Research has shown that preoperatively tilted proximal ribs and T1 tilt are more correlated with trapezial prominence than with clavicle angle.
METHODS: Prospectively collected Lenke 1 and 2 cases from a single center were reviewed. Clinical shoulder imbalance was measured from 2-year postoperative clinical photos. Lateral shoulder imbalance was assessed utilizing clavicle angle. Medial imbalance was assessed with trapezial angle (TA), and trapezial area ratio (TAR). First rib angle, T1 tilt, and upper thoracic curve were measured from 2-year radiographs. Angular measurements were considered level if ≤ 3° of zero. TAR was considered level if ≤ 1 standard deviation of the natural log of the ratio. Upper thoracic Cobb at 2-years was categorized as at or below the mean value (≤ 14°) versus above the mean.
RESULTS: Eighty-four patients were identified. There was no significant difference in the percentage of patients with a level clavicle angle or TAR based on first rib being level, T1 tilt being level, or upper thoracic Cobb being at/below versus above the mean (P
OBJECTIVE: To investigate the effect of hand position and lower limb length measurement method on LQ-YBT scores and their interpretation.
DESIGN: Cross-sectional study.
SETTING: National Sports Institute of Malaysia.
PATIENTS OR OTHER PARTICIPANTS: A total of 46 volunteers, consisting of 23 men (age = 25.7 ± 4.6 years, height = 1.70 ± 0.05 m, mass = 69.3 ± 9.2 kg) and 23 women (age = 23.5 ± 2.5 years, height = 1.59 ± 0.07 m, mass = 55.7 ± 10.6 kg).
INTERVENTION(S): Participants performed the LQ-YBT with hands on hips and hands free to move on both lower limbs.
MAIN OUTCOME MEASURE(S): In a single-legged stance, participants reached with the contralateral limb in each of the anterior, posteromedial, and posterolateral directions 3 times. Maximal reach distances in each direction were normalized to lower limb length measured from the anterior-superior iliac spine to the lateral and medial malleoli. Composite scores (average of the 3 normalized reach distances) and anterior-reach differences (in raw units) were extracted and used to identify participants at risk for injury (ie, anterior-reach difference ≥4 cm or composite score ≤94%). Data were analyzed using paired t tests, Fisher exact tests, and magnitude-based inferences (effect size [ES], ±90% confidence limits [CLs]).
RESULTS: Differences between hand positions in normalized anterior-reach distances were trivial (t91 = -2.075, P = .041; ES = 0.12, 90% CL = ±0.10). In contrast, reach distances were greater when the hands moved freely for the normalized posteromedial (t91 = -6.404, P < .001; ES = 0.42, 90% CL = ±0.11), posterolateral (t91 = -6.052, P < .001; ES = 0.58, 90% CL = ±0.16), and composite (t91 = -7.296, P < .001; ES = 0.47, 90% CL = ±0.11) scores. A similar proportion of the cohort was classified as at risk with the hands on the hips (35% [n = 16]) and the hands free to move (43% [n = 20]; P = .52). However, the participants classified as at risk with the hands on the hips were not all categorized as at risk with the hands free to move and vice versa. The lower limb length measurement method exerted trivial effects on LQ-YBT outcomes.
CONCLUSIONS: Hand position exerted nontrivial effects on LQ-YBT outcomes and interpretation, whereas the lower limb length measurement method had trivial effects.
METHODS: A total of 51 subjects qualified to take part in this quasi-experimental study. They were assigned to either the resistance exercise group (n = 26) or control group (n = 25). The mean age of the 45 participants who completed the program was 70.7 (SD = 6.6). The exercise group met twice per week and performing one to three sets of 8 to 10 repetitions for each of nine lower-limb elastic resistance exercises. All exercises were conducted at low to moderate intensities in sitting or standing positions. The subjects were tested at baseline and 6 and 12 weeks into the program.
RESULTS: The results showed statistically significant improvements in lower-limb muscle strength as measured by five times sit-to-stand test (%Δ = 22.6) and dynamic balance quantified by the timed up-and-go test (%Δ = 18.7), four-square step test (%Δ = 14.67), and step test for the right (%Δ = 18.36) and left (%Δ = 18.80) legs. No significant changes were observed in static balance as measured using the tandem stand test (%Δ = 3.25), and one-leg stand test with eyes opened (%Δ = 9.58) and eyes closed (%Δ = -0.61) after completion of the program.
CONCLUSION: The findings support the feasibility and efficacy of a simple and inexpensive resistance training program to improve lower-limb muscle strength and dynamic balance among the institutionalized older adults.