Displaying publications 21 - 24 of 24 in total

Abstract:
Sort:
  1. Kamal N, Sabaratnam V, Abdullah N, Ho AS, Teo SH, Lee HB
    Antonie Van Leeuwenhoek, 2009 Feb;95(2):179-88.
    PMID: 19125347 DOI: 10.1007/s10482-008-9301-8
    Photodynamic therapy (PDT) is a promising cancer treatment which involves activation of a photosensitizing drug with light to produce reactive oxygen species that kill tumors without causing damage to unirradiated normal tissues. To date, only Photofrin, Foscan and Levulan have been approved for clinical treatment of cancer. Tropical habitats such as those found in Malaysia are attractive sources of new therapeutic compounds as tremendous chemical diversity is found in a large number of plants, animals, marine- and micro-organisms. In our screening program for novel photosensitizers from nature, colorful strains of fungi (from Aspergillus and Penicillium genus) and bacteria (including actinomycetes and photosynthetic bacteria) were collected from various habitats in Peninsular Malaysia, such as coastal soil, peat soil, marine sponges and wastewater ponds. Methanolic extracts from a total of 85 different species were evaluated with a short-term cell viability assay for photo-cytotoxicity, where a promyelocytic leukemia cell-line, HL60 incubated with 20 microg/ml of extracts was irradiated with 9.6 J/cm(2) of a broad spectrum light. Two of these extracts, one from Rhodobacter sphaeroides (PBUM003) and one from Rhodopseudomonas palustris (PBUM001) showed moderate to strong photo-cytotoxicity. Subsequent bioassay guided isolation of the PBUM001 extract yielded known photosensitisers that are based on bacteriochlorophyll-a by comparing their molecular weight data, HPLC profiles and UV-vis absorption spectra with literature values, thereby demonstrating the validity of our screening approach.
    Matched MeSH terms: Porifera/microbiology*
  2. Hitora Y, Takada K, Ise Y, Woo SP, Inoue S, Mori N, et al.
    Bioorg Med Chem, 2020 01 15;28(2):115233.
    PMID: 31848114 DOI: 10.1016/j.bmc.2019.115233
    New sesquiterpene quinones, metachromins X (1) and Y (2), together with the known metachromins C (3), J (4), and T (5), were isolated as inhibitors of cell cycle progression in the HeLa/Fucci2 cells. The structure of 1 was assigned by spectroscopic data and confirmed by a total synthesis. The planar structure of 2 was determined by interpretation of spectroscopic data, whereas its absolute configuration was analyzed by a combination of chiral HPLC and CD spectroscopy. Metachromins X (1) and C (3) arrested the cell cycle progression of HeLa/Fucci2 cells at S/G2/M phase.
    Matched MeSH terms: Porifera/chemistry*
  3. Mayer AMS, Hall ML, Lach J, Clifford J, Chandrasena K, Canton C, et al.
    Mar Drugs, 2021 Sep 07;19(9).
    PMID: 34564169 DOI: 10.3390/md19090506
    Manzamines are complex polycyclic marine-derived β-carboline alkaloids with reported anticancer, immunostimulatory, anti-inflammatory, antibacterial, antiviral, antimalarial, neuritogenic, hyperlipidemia, and atherosclerosis suppression bioactivities, putatively associated with inhibition of glycogen synthase kinase-3, cyclin-dependent kinase 5, SIX1, and vacuolar ATPases. We hypothesized that additional, yet undiscovered molecular targets might be associated with Manzamine A's (MZA) reported pharmacological properties. We report here, for the first time, that MZA selectively inhibited a 90 kDa ribosomal protein kinase S6 (RSK1) when screened against a panel of 30 protein kinases, while in vitro RSK kinase assays demonstrated a 10-fold selectivity in the potency of MZA against RSK1 versus RSK2. The effect of MZA on inhibiting cellular RSK1 and RSK2 protein expression was validated in SiHa and CaSki human cervical carcinoma cell lines. MZA's differential binding and selectivity toward the two isoforms was also supported by computational docking experiments. Specifically, the RSK1-MZA (N- and C-termini) complexes appear to have stronger interactions and preferable energetics contrary to the RSK2-MZA ones. In addition, our computational strategy suggests that MZA binds to the N-terminal kinase domain of RSK1 rather than the C-terminal domain. RSK is a vertebrate family of cytosolic serine-threonine kinases that act downstream of the ras-ERK1/2 (extracellular-signal-regulated kinase 1/2) pathway, which phosphorylates substrates shown to regulate several cellular processes, including growth, survival, and proliferation. Consequently, our findings have led us to hypothesize that MZA and the currently known manzamine-type alkaloids isolated from several sponge genera may have novel pharmacological properties with unique molecular targets, and MZA provides a new tool for chemical-biology studies involving RSK1.
    Matched MeSH terms: Porifera*
  4. Varijakzhan D, Loh JY, Yap WS, Yusoff K, Seboussi R, Lim SE, et al.
    Mar Drugs, 2021 Apr 27;19(5).
    PMID: 33925365 DOI: 10.3390/md19050246
    Marine sponges are sessile invertebrates that can be found in temperate, polar and tropical regions. They are known to be major contributors of bioactive compounds, which are discovered in and extracted from the marine environment. The compounds extracted from these sponges are known to exhibit various bioactivities, such as antimicrobial, antitumor and general cytotoxicity. For example, various compounds isolated from Theonella swinhoei have showcased various bioactivities, such as those that are antibacterial, antiviral and antifungal. In this review, we discuss bioactive compounds that have been identified from marine sponges that showcase the ability to act as antibacterial, antiviral, anti-malarial and antifungal agents against human pathogens and fish pathogens in the aquaculture industry. Moreover, the application of such compounds as antimicrobial agents in other veterinary commodities, such as poultry, cattle farming and domesticated cats, is discussed, along with a brief discussion regarding the mode of action of these compounds on the targeted sites in various pathogens. The bioactivity of the compounds discussed in this review is focused mainly on compounds that have been identified between 2000 and 2020 and includes the novel compounds discovered from 2018 to 2021.
    Matched MeSH terms: Porifera/metabolism*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links