AIM OF THIS REVIEW: In this article, we have reviewed the literature on the phytochemicals of several Tinospora species, which have shown strong immunomodulatory effects and critically analyzed the reports to provide perspectives and instructions for future research for the plants as a potential source of new immunomodulators for use as medicinal agents or dietary supplements.
MATERIALS AND METHODS: Electronic search on worldwide accepted scientific databases (Google Scholar, Science Direct, SciFinder, Web of Science, PubMed, Wiley Online Library, ACS Publications Today) was performed to compile the relevant information. Some information was obtained from books, database on medicinal plants used in Ayurveda, MSc dissertations and herbal classics books written in various languages.
RESULTS: T. cordifolia, T. crispa, T. sinensis, T. smilacina, T. bakis, and T. sagittata have been reported to possess significant immunomodulatory effects. For a few decades, initiatives in molecular research on the effects of these species on the immune system have been carried out. However, most of the biological and pharmacological studies were carried out using the crude extracts of plants. The bioactive compounds contributing to the bioactivities have not been properly identified, and mechanistic studies to understand the immunomodulatory effects of the plants are limited by many considerations with regard to design, conduct, and interpretation.
CONCLUSION: The plant extracts and their active constituents should be subjected to more detail mechanistic studies, in vivo investigations in various animal models including pharmacokinetic and bioavailability studies, and elaborate toxicity study before submission to clinical trials.
METHODS: This systematic review was conducted by performing searches for relevant publications on two databases (PubMed and Scopus). The publication period was limited from January 2011 to December 2021. Cochrane collaboration tools were used for the risk of bias assessment of each trial.
RESULT: Six out of 8 randomised controlled trials (n:776) demonstrated a significant improvement in lipid profile (p <0.05), 5 out of 7 trials (n:701) showed a significant reduction in glycaemic indices (p <0.05), 1 out of 5 trials (n:551) demonstrated significant improvements in blood pressure (p <0.05), and 2 out of 7 trials (n:705) showed a significant reduction in anthropometric measurements (p <0.05).
CONCLUSION: Nigella Sativa has proved to have a significant positive effect on lipid profile and glycaemic index. The results showed in the parameters of blood pressure and anthropometric indices are less convincing, as results were inconsistent across studies. Nigella Sativa can therefore be recommended as an adjunct therapy for metabolic syndrome.
OBJECTIVES: To assess the effects of sweet potato for type 2 diabetes mellitus.
SEARCH METHODS: We searched several electronic databases, including The Cochrane Library (2013, Issue 1), MEDLINE, EMBASE, CINAHL, SIGLE and LILACS (all up to February 2013), combined with handsearches. No language restrictions were used.
SELECTION CRITERIA: We included randomised controlled trials (RCTs) that compared sweet potato with a placebo or a comparator intervention, with or without pharmacological or non-pharmacological interventions.
DATA COLLECTION AND ANALYSIS: Two authors independently selected the trials and extracted the data. We evaluated risk of bias by assessing randomisation, allocation concealment, blinding, completeness of outcome data, selective reporting and other potential sources of bias.
MAIN RESULTS: Three RCTs met our inclusion criteria: these investigated a total of 140 participants and ranged from six weeks to five months in duration. All three studies were performed by the same trialist. Overall, the risk of bias of these trials was unclear or high. All RCTs compared the effect of sweet potato preparations with placebo on glycaemic control in type 2 diabetes mellitus. There was a statistically significant improvement in glycosylated haemoglobin A1c (HbA1c) at three to five months with 4 g/day sweet potato preparation compared to placebo (mean difference -0.3% (95% confidence interval -0.6 to -0.04); P = 0.02; 122 participants; 2 trials). No serious adverse effects were reported. Diabetic complications and morbidity, death from any cause, health-related quality of life, well-being, functional outcomes and costs were not investigated.
AUTHORS' CONCLUSIONS: There is insufficient evidence about the use of sweet potato for type 2 diabetes mellitus. In addition to improvement in trial methodology, issues of standardization and quality control of preparations - including other varieties of sweet potato - need to be addressed. Further observational trials and RCTs evaluating the effects of sweet potato are needed to guide any recommendations in clinical practice.
OBJECTIVE: The present review discusses the literature concerning the antidiabetic and antioxidant properties of MC focusing on the complication of diabetes mellitus along with its mode of delivery. We found that among the whole part of MC, its fruit extract has been widely studied, therapeutically. The evidence based analysis of the beneficiary effects of MC on the different organs involved in diabetes complication is also highlighted. This review elucidated an essential understanding of MC based drug delivery system in both clinical and experimental studies and appraised the great potential of the protein based MC extract against diabetes mellitus.
CONCLUSION: The review paper is believed to assist the researchers and medical personnel in treating diabetic associated complications.
OBJECTIVE: This review was aimed to summarize and critically discuss the convincing evidence for the therapeutic effectiveness of phytomedicines for the treatment of AD and explore their anti-AD efficacy.
RESULTS: The critical analysis of a wide algorithm of herbal medicines revealed that their remarkable anti-AD efficacy is attributed to their potential of reducing erythema intensity, oedema, inflammation, transepidermal water loss (TEWL) and a remarkable suppression of mRNA expression of ADassociated inflammatory biomarkers including histamine, immunoglobulin (Ig)-E, prostaglandins, mast cells infiltration and production of cytokines and chemokines in the serum and skin biopsies.
CONCLUSION: In conclusion, herbal medicines hold great promise as complementary and alternative therapies for the treatment of mild-to-moderate AD when used as monotherapy and for the treatment of moderate-to-severe AD when used in conjunction with other pharmacological agents.
AIM: The study aimed to investigate the effect of P.s on atherosclerotic changes in hypercholesterolemic rabbits.
METHODS: Forty two male New Zealand white rabbits were divided into seven groups. C - control group fed normal rabbit chow, CH - cholesterol diet (1% cholesterol), W1 - 1% cholesterol with water extract of P.s (62.5 mg/kg), W2 - 1% cholesterol with water extract of P.s (125 mg/kg), W3 - 1% cholesterol with water extract of P.s (250 mg/kg), W4 - 1% cholesterol with water extract of P.s (500 mg/kg) and Smv - 1% cholesterol supplemented with simvistatin drug (1.2 mg/kg). All rabbits were treated for 10 weeks. Following 10 weeks of supplementation, the animals were sacrificed and the aortic tissue was taken for histological study.
RESULTS: Rabbits fed only with high cholesterol diet 1% cholesterol (CH) showed focal fatty streak lesions compared to the C group and 1% cholesterol supplemented with simvistatin drug (Smv) group. Atherosclerotic lesions in the 1% cholesterol group supplemented with P.s (500 mg/kg) i.e. W4 group showed significant reduction (30 + or - 6.0%, p < 0.05) in fatty streak compared to the high cholesterol group (85.6 + or - 4.1%) under Sudan IV stain. The atherosclerotic lesions under transmission electron microscope showed reduction in foam cells in the treatment groups compared to the CH groups.
CONCLUSION: Administration of P.s extract has protective effect against atheroscleros.