Displaying publications 21 - 40 of 515 in total

Abstract:
Sort:
  1. Yap CK, Ismail A, Tan SG
    Bull Environ Contam Toxicol, 2003 Sep;71(3):570-6.
    PMID: 14567584
    Matched MeSH terms: Mercury/pharmacokinetics*; Water Pollutants/pharmacokinetics*
  2. Abdullah AR, Sinnakkannu S, Tahir NM
    Bull Environ Contam Toxicol, 2001 Jun;66(6):762-9.
    PMID: 11353379
    Matched MeSH terms: Arylsulfonates/pharmacokinetics; Herbicides/pharmacokinetics
  3. Ismail BS, Cheah UB, Enoma AO, Lum KY, Malik Z
    Bull Environ Contam Toxicol, 2002 Sep;69(3):444-51.
    PMID: 12177768
    Matched MeSH terms: Insecticides/pharmacokinetics*; Organothiophosphorus Compounds/pharmacokinetics*
  4. Yap CK, Ismail A, Tan SG
    Mar Pollut Bull, 2003 Aug;46(8):1044-8.
    PMID: 12907200
    Matched MeSH terms: Water Pollutants/pharmacokinetics; Metals, Heavy/pharmacokinetics
  5. Yuen KH, Wong JW, Billa N, Choy WP, Julianto T
    Med J Malaysia, 1999 Dec;54(4):482-6.
    PMID: 11072466
    The bioavailability of a generic preparation of ketoconazole (Zorinax from Xepa-Soul Pattinson, Malaysia) was evaluated in comparison with the innovator product (Nizoral from Janssen Pharmaceutica, Switzerland). Eighteen healthy male volunteers participated in the study conducted according to a two-way crossover design. The bioavailability was compared using the parameters, total area under the plasma concentration-time curve (AUC0-infinity), peak plasma concentration (Cmax) and time to reach peak plasma concentration (Tmax). No statistically significant difference was observed between the values of the two products in all the three parameters. Moreover, the 90% confidence interval for the ratio of the logarithmic transformed AUC0-infinity and Cmax values of Zorinax over Nizoral was found to lie between 0.82-1.04 and 0.83-1.02, respectively, being within the acceptable equivalence limit of 0.80-1.25. These findings indicate that the two preparations are comparable in the extent and rate of absorption. In addition, the elimination rate constant (ke) and apparent volume of distribution (Vd) were calculated. For both parameters, there was no statistically significant difference between the values obtained from the data of the two preparations. Moreover, the values are comparable to those reported in the literature.
    Matched MeSH terms: Antifungal Agents/pharmacokinetics*; Ketoconazole/pharmacokinetics*
  6. Jamaludin A, Mohamad M, Navaratnam V, Yeoh PY, Wernsdorfer WH
    Trop. Med. Parasitol., 1990 Sep;41(3):268-72.
    PMID: 2255843
    A pharmacokinetic study with 12-hourly doses of 100 mg proguanil hydrochloride over 15 days has been conducted in six adult male Malaysian volunteers. Steady state for proguanil was established after the fourth dose on Day 2, for the active metabolite cycloguanil as from Day 3 inclusive. The steady state mean peak concentration of proguanil was 1201.6 +/- 132.4 nmol/l, the mean trough concentration 650.0 +/- 58.1 nmol/l. The corresponding values for cycloguanil were 317.0 +/- 44.4 nmol/l (mean peak) and 230.8 +/- 35.1 nmol/l (mean trough). The profiles and peak/trough ratios of proguanil and cycloguanil with 12-hourly dosing offer better prospects for protection against malaria than those obtained with 24-hourly doses of 200 mg proguanil hydrochloride, the current routine in malaria chemoprophylaxis.
    Matched MeSH terms: Proguanil/pharmacokinetics*; Triazines/pharmacokinetics*
  7. Umar-Tsafe N, Mohamed-Said MS, Rosli R, Din LB, Lai LC
    Mutat Res, 2004 Aug 8;562(1-2):91-102.
    PMID: 15279832
    Goniothalamin (GTN) is a styrylpyrrone derivative from Goniothalamus umbrosus and other Annonaceae species. It has been shown to have anti-cancer and apoptosis-inducing properties against various human tumour and animal cell lines. The compound has also been shown to be active in vivo against DMBA-induced rat mammary tumours and was reported as an anti-fertility agent in rats. The aim of our study was to assess the genotoxicity of GTN in CHO cells using the UKEMS guidelines. A metabolic activation fraction (S9) was prepared according to standard methods. The methylthiazoletetrazolium (MTT) screening assay was then carried out to determine the cytotoxicity index (IC50) of GTN. The average IC50 value was 12.45 (+/- 3.63)microM. The mitotic index (MI) assay was then performed to determine the clastogenicity indices (MI(C25), MI(C50) and MI(C100)) of GTN. The chromosome aberration (CA) induction assay using air-dried metaphase spread was then performed to investigate the clastogenic effects of goniothalamin. Benzo[a]pyrene (BaP) and ethylmethanesulphonate (EMS) were used as positive controls in the presence and absence of S9 metabolic activation, respectively. The anti-genotoxicity effect of GTN was also assessed using a combination of GTN and EMS, and GTN and BaP. Dose-responses of CA frequencies were determined for both, the genotoxicity and anti-genotoxicity effects. GTN on its own and when combined with positive controls, was found to induce and enhance CA, respectively. Chromatid and whole chromosome breaks/gaps, as well as interchanges, endoreduplications and ring chromosomes were the main types of aberration induced by GTN. The overall clastogenic effect of GTN was statistically significant. In conclusion, GTN is potentially a genotoxic or clastogenic substance without any anti-genotoxic properties.
    Matched MeSH terms: Mutagens/pharmacokinetics; Pyrones/pharmacokinetics
  8. Salman S, Bendel D, Lee TC, Templeton D, Davis TM
    Antimicrob Agents Chemother, 2015;59(6):3197-207.
    PMID: 25801553 DOI: 10.1128/AAC.05013-14
    The pharmacokinetics of sublingual artemether (ArTiMist) was investigated in two open-label studies. In study 1, 16 healthy males were randomized to each of four single-dose treatments administered in random order: (i) 15.0 mg of sublingual artemether (5 × 3.0 actuations), (ii) 30.0 mg of sublingual artemether (10 × 3.0 mg), (iii) 30.0 mg of sublingual artemether (5 × 6.0 mg), and (iv) 30.0 mg of artemether in tablet form. In study 2, 16 healthy males were randomized to eight 30.0-mg doses of sublingual artemether given over 5 days as either 10 3.0-mg or 5 6.0-mg actuations. Frequent blood samples were drawn postdose. Plasma artemether and dihydroartemisinin levels were measured using liquid chromatography-mass spectrometry. Population compartmental pharmacokinetic models were developed. In study 1, sublingual artemether absorption was biphasic, with both rate constants being greater than that of the artemether tablets (1.46 and 1.66 versus 0.43/h, respectively). Relative to the tablets, sublingual artemether had greater bioavailability (≥1.24), with the greatest relative bioavailability occurring in the 30.0-mg dose groups (≥1.58). In study 2, there was evidence that the first absorption phase accounted for between 32% and 69% of the total dose and avoided first-pass (FP) metabolism, with an increase in FP metabolism occurring in later versus earlier doses but with no difference in bioavailability between the dose actuations. Sublingual artemether is more rapidly and completely absorbed than are equivalent doses of artemether tablets in healthy adults. Its disposition appears to be complex, with two absorption phases, the first representing pregastrointestinal absorption, as well as dose-dependent bioavailability and autoinduction of metabolism with multiple dosing.
    Matched MeSH terms: Antimalarials/pharmacokinetics*; Artemisinins/pharmacokinetics*
  9. Navaratnam V, Mordi MN, Mansor SM
    J Chromatogr B Biomed Sci Appl, 1997 Apr 25;692(1):157-62.
    PMID: 9187395
    A selective reproducible high-performance liquid chromatographic assay for the simultaneous quantitative determination of the antimalarial compound artesunic acid (ARS), dihydroartemisinin (DQHS) and artemisinin (QHS), as internal standard, is described. After extraction from plasma, ARS and DQHS were analysed using an Econosil C8 column and a mobile phase of acetonitrile-0.05 M acetic acid (42:58, v/v) adjusted to pH 5.0 and electrochemical detection in the reductive mode. The mean recovery of ARS and DQHS over a concentration range of 50-200 ng/ml was 75.5% and 93.5%, respectively. The within-day coefficients of variation were 4.2-7.4% for ARS and 2.6-4.9% for DQHS. The day-to-day coefficients of variation were 1.6-9.6% and 0.5-8.3%, respectively. The minimum detectable concentration for ARS and DQHS in plasma was 4.0 ng/ml for both compounds. The method was found to be suitable for use in clinical pharmacological studies.
    Matched MeSH terms: Antimalarials/pharmacokinetics; Sesquiterpenes/pharmacokinetics
  10. Peh KK, Billa N, Yuen KH
    J Chromatogr B Biomed Sci Appl, 1997 Nov 07;701(1):140-5.
    PMID: 9389350
    A simple liquid chromatographic method using amperometric detection was developed for the determination of naltrexone in human plasma. Prior to analysis, naltrexone and the internal standard (naloxone) were extracted from plasma samples using a 9:1 mixture of chloroform and isopropyl alcohol. The mobile phase comprised 0.1 M disodium hydrogen orthophosphate (pH 3.5) and acetonitrile (85.5:14.5, v/v). Analysis was run at a flow-rate of 0.8 ml/min with the detector operating under oxidative mode at an applied potential of +0.95 V. The method is specific and sensitive with a detection limit of approximately 1 ng/ml at a signal-to-noise ratio of 3:1. Mean recovery value of the extraction procedure was about 93%, while the within day and between day coefficient of variation and percent error values of the assay method were all less than 10%. The calibration curve was linear over a concentration range of 1.5-100 ng/ml.
    Matched MeSH terms: Naltrexone/pharmacokinetics; Narcotic Antagonists/pharmacokinetics
  11. Kow CS, Hasan SS
    Int Immunopharmacol, 2021 Apr;93:107415.
    PMID: 33540249 DOI: 10.1016/j.intimp.2021.107415
    Matched MeSH terms: Antiviral Agents/pharmacokinetics; Interferons/pharmacokinetics
  12. Holford N, O'Hanlon CJ, Allegaert K, Anderson B, Falcão A, Simon N, et al.
    Br J Clin Pharmacol, 2024 Apr;90(4):1066-1080.
    PMID: 38031322 DOI: 10.1111/bcp.15978
    AIMS: We propose using glomerular filtration rate (GFR) as the physiological basis for distinguishing components of renal clearance.

    METHODS: Gentamicin, amikacin and vancomycin are thought to be predominantly excreted by the kidneys. A mixed-effects joint model of the pharmacokinetics of these drugs was developed, with a wide dispersion of weight, age and serum creatinine. A dataset created from 18 sources resulted in 27,338 drug concentrations from 9,901 patients. Body size and composition, maturation and renal function were used to describe differences in drug clearance and volume of distribution.

    RESULTS: This study demonstrates that GFR is a predictor of two distinct components of renal elimination clearance: (1) GFR clearance associated with normal GFR and (2) non-GFR clearance not associated with normal GFR. All three drugs had GFR clearance estimated as a drug-specific percentage of normal GFR (gentamicin 39%, amikacin 90% and vancomycin 57%). The total clearance (sum of GFR and non-GFR clearance), standardized to 70 kg total body mass, 176 cm, male, renal function 1, was 5.58 L/h (95% confidence interval [CI] 5.50-5.69) (gentamicin), 7.77 L/h (95% CI 7.26-8.19) (amikacin) and 4.70 L/h (95% CI 4.61-4.80) (vancomycin).

    CONCLUSIONS: GFR provides a physiological basis for renal drug elimination. It has been used to distinguish two elimination components. This physiological approach has been applied to describe clearance and volume of distribution from premature neonates to elderly adults with a wide dispersion of size, body composition and renal function. Dose individualization has been implemented using target concentration intervention.

    Matched MeSH terms: Amikacin/pharmacokinetics; Gentamicins/pharmacokinetics
  13. Saadi S, Saari N, Anwar F, Abdul Hamid A, Ghazali HM
    Biotechnol Adv, 2014 12 12;33(1):80-116.
    PMID: 25499177 DOI: 10.1016/j.biotechadv.2014.12.003
    The growing momentum of several common life-style diseases such as myocardial infarction, cardiovascular disorders, stroke, hypertension, diabetes, and atherosclerosis has become a serious global concern. Recent developments in the field of proteomics offering promising solutions to solving such health problems stimulates the uses of biopeptides as one of the therapeutic agents to alleviate disease-related risk factors. Functional peptides are typically produced from protein via enzymatic hydrolysis under in vitro or in vivo conditions using different kinds of proteolytic enzymes. An array of biological activities, including antioxidative, antihypertensive, antidiabetic and immunomodulating has been ascribed to different types of biopeptides derived from various food sources. In fact, biopeptides are nutritionally and functionally important for regulating some physiological functions in the body; however, these are yet to be extensively addressed with regard to their production through advance strategies, mechanisms of action and multiple biological functionalities. This review mainly focuses on recent biotechnological advances that are being made in the field of production in addition to covering the mode of action and biological activities, medicinal health functions and therapeutic applications of biopeptides. State-of-the-art strategies that can ameliorate the efficacy, bioavailability, and functionality of biopeptides along with their future prospects are likewise discussed.
    Matched MeSH terms: Anti-Infective Agents/pharmacokinetics*; Anticoagulants/pharmacokinetics*; Antihypertensive Agents/pharmacokinetics*; Biological Products/pharmacokinetics; Peptides/pharmacokinetics*
  14. Yap CK, Noorhaidah A, Azlan A, Nor Azwady AA, Ismail A, Ismail AR, et al.
    Ecotoxicol Environ Saf, 2009 Feb;72(2):496-506.
    PMID: 18243309 DOI: 10.1016/j.ecoenv.2007.12.005
    The distributions of Cu, Zn, and Pb concentrations in the selected soft tissues (foot, cephalic tentacle, mantle, muscle, gill, digestive caecum, and remaining soft tissues) and shells of the mud-flat snail Telescopium telescopium were determined in snails from eight geographical sites in the south-western intertidal area of Peninsular Malaysia. Generally, the digestive caecum compared with other selected soft tissues, accumulated higher concentration of Zn (214.35+/-14.56 microg/g dry weight), indicating that the digestive caecum has higher affinity for the essential Zn to bind to metallothionein. The shell demonstrated higher concentrations of Pb (41.23+/-1.20 microg/g dry weight) when compared to the selected soft tissues except gill from Kuala Sg. Ayam (95.76+/-5.32 microg/g dry weight). The use of different soft tissues also can solve the problem of defecation to reduce error in interpreting the bioavailability of heavy metals in the intertidal area.
    Matched MeSH terms: Copper/pharmacokinetics; Lead/pharmacokinetics; Soil Pollutants/pharmacokinetics; Water Pollutants, Chemical/pharmacokinetics; Zinc/pharmacokinetics
  15. Mathews A, Bailie GR
    J Clin Pharm Ther, 1987 Oct;12(5):273-91.
    PMID: 3119606
    This article reviews the clinical pharmacokinetics, clinical toxicity and cost-effectiveness analysis of aminoglycosides and of dosing services for aminoglycosides. The reader is referred elsewhere for a review of the pharmacology, antimicrobial spectrum of activity and clinical use of these drugs. A critique of the more commonly used methods of aminoglycoside dosage determinations is included, based on the inter-individual variation in aminoglycoside disposition parameters. The advantages and disadvantages of arbitrary, predictive, and pharmacokinetic methods of dosing determination are summarized. Justification for the routine determination of serum aminoglycoside concentrations is reviewed. We review the lack of standardization of definitions for aminoglycoside-associated nephrotoxicity in published studies, and studies which illustrate these differences are highlighted. Evidence for the association between serum aminoglycoside concentrations and nephrotoxicity is examined. Ototoxicity is similarly reviewed. The concept of cost-effectiveness analysis is examined extensively in this review. We discuss the literature concerning the cost benefit analysis of drug dosing services.
    Matched MeSH terms: Amikacin/pharmacokinetics; Aminoglycosides/pharmacokinetics; Gentamicins/pharmacokinetics; Netilmicin/pharmacokinetics; Tobramycin/pharmacokinetics
  16. Bose A, Wui WT
    Eur J Drug Metab Pharmacokinet, 2013 Sep;38(3):191-200.
    PMID: 23264125 DOI: 10.1007/s13318-012-0116-7
    The experimental study presents a brief and comprehensive perspective on the methods of developing a Level A in vitro-in vivo correlation (IVIVC) for extended oral dosage forms of water-insoluble drug domperidone. The study also evaluates the validity and predictability of in vitro-in vivo correlation using the convolution technique by one-compartmental first-order kinetic equation. The IVIVC can be substituted as a surrogate for in vivo bioavailability study for the documentation of bioequivalence studies as mandatory from any regulatory authorities. The in vitro drug release studies for different formulations (fast, moderate, slow) were conducted in different dissolution mediums. The f (2) metric (similarity factor) was used to analyze the dissolution data for determination of the most discriminating dissolution method. The in vivo pharmacokinetics parameters of all the formulations were determined by using liquid chromatography mass spectrometry (LC/MS) methods. The absorption rate constant and percentage of absorption of drugs at different time intervals were calculated by using data convolution. In vitro drug release and in vivo absorption correlation were found to be a linear correlation model, which was developed by using percent absorbed drug release versus percent drug dissolved from the three formulations. Internal and external validation was performed to validate the IVIVC. Predicted domperidone concentrations were obtained by convolution technique using first-order one-compartmental fitting equation. Prediction errors estimated for C (max) and AUC (0-infinity) were found to be within the limit.
    Matched MeSH terms: Domperidone/pharmacokinetics*
  17. Selby-Pham SNB, Siow LF, Bennett LE
    Food Funct, 2020 Jan 29;11(1):907-920.
    PMID: 31942898 DOI: 10.1039/c9fo01149h
    After oil extraction, palm fruit biomass contains abundant water-soluble phytochemicals (PCs) with proven bioactivity in regulating oxidative stress and inflammation (OSI). For optimal bioefficacy following oral consumption, the pharmacokinetic plasma peak (Tmax) should be bio-matched with the onset of OSI, which can be predicted from the Phytochemical Absorption Prediction (PCAP) model and methodology. Predicted absorption and potential for regulation of OSI by measures of total phenolic content, antioxidant capacity and hydrogen peroxide production capacity, were applied to characterise eight extracts from mesocarp fibre and kernel shells of oil-depleted palm fruits. Results indicated post-consumption absorption Tmax ranges of 0.5-12 h and 2-6 h for intake in liquid and solid forms, respectively, and generally high antioxidant activity of the extracts. The research supports that PC extracts of palm fruit biomass have broad potential uses for human health as dietary antioxidants in foods, supplements or functional beverages.
    Matched MeSH terms: Antioxidants/pharmacokinetics*
  18. Tang BH, Zhang JY, Allegaert K, Hao GX, Yao BF, Leroux S, et al.
    Clin Pharmacokinet, 2023 Aug;62(8):1105-1116.
    PMID: 37300630 DOI: 10.1007/s40262-023-01265-z
    BACKGROUND AND OBJECTIVE: High variability in vancomycin exposure in neonates requires advanced individualized dosing regimens. Achieving steady-state trough concentration (C0) and steady-state area-under-curve (AUC0-24) targets is important to optimize treatment. The objective was to evaluate whether machine learning (ML) can be used to predict these treatment targets to calculate optimal individual dosing regimens under intermittent administration conditions.

    METHODS: C0 were retrieved from a large neonatal vancomycin dataset. Individual estimates of AUC0-24 were obtained from Bayesian post hoc estimation. Various ML algorithms were used for model building to C0 and AUC0-24. An external dataset was used for predictive performance evaluation.

    RESULTS: Before starting treatment, C0 can be predicted a priori using the Catboost-based C0-ML model combined with dosing regimen and nine covariates. External validation results showed a 42.5% improvement in prediction accuracy by using the ML model compared with the population pharmacokinetic model. The virtual trial showed that using the ML optimized dose; 80.3% of the virtual neonates achieved the pharmacodynamic target (C0 in the range of 10-20 mg/L), much higher than the international standard dose (37.7-61.5%). Once therapeutic drug monitoring (TDM) measurements (C0) in patients have been obtained, AUC0-24 can be further predicted using the Catboost-based AUC-ML model combined with C0 and nine covariates. External validation results showed that the AUC-ML model can achieve an prediction accuracy of 80.3%.

    CONCLUSION: C0-based and AUC0-24-based ML models were developed accurately and precisely. These can be used for individual dose recommendations of vancomycin in neonates before treatment and dose revision after the first TDM result is obtained, respectively.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacokinetics
  19. Kirubakaran R, Stocker SL, Carlos L, Day RO, Carland JE
    Ther Drug Monit, 2021 Dec 01;43(6):736-746.
    PMID: 34126624 DOI: 10.1097/FTD.0000000000000909
    BACKGROUND: Therapeutic drug monitoring is recommended to guide tacrolimus dosing because of its narrow therapeutic window and considerable pharmacokinetic variability. This study assessed tacrolimus dosing and monitoring practices in heart transplant recipients and evaluated the predictive performance of a Bayesian forecasting software using a renal transplant-derived tacrolimus model to predict tacrolimus concentrations.

    METHODS: A retrospective audit of heart transplant recipients (n = 87) treated with tacrolimus was performed. Relevant data were collected from the time of transplant to discharge. The concordance of tacrolimus dosing and monitoring according to hospital guidelines was assessed. The observed and software-predicted tacrolimus concentrations (n = 931) were compared for the first 3 weeks of oral immediate-release tacrolimus (Prograf) therapy, and the predictive performance (bias and imprecision) of the software was evaluated.

    RESULTS: The majority (96%) of initial oral tacrolimus doses were guideline concordant. Most initial intravenous doses (93%) were lower than the guideline recommendations. Overall, 36% of initial tacrolimus doses were administered to transplant recipients with an estimated glomerular filtration rate of <60 mL/min/1.73 m despite recommendations to delay the commencement of therapy. Of the tacrolimus concentrations collected during oral therapy (n = 1498), 25% were trough concentrations obtained at steady-state. The software displayed acceptable predictions of tacrolimus concentration from day 12 (bias: -6%; 95%confidence interval, -11.8 to 2.5; imprecision: 16%; 95% confidence interval, 8.7-24.3) of therapy.

    CONCLUSIONS: Tacrolimus dosing and monitoring were discordant with the guidelines. The Bayesian forecasting software was suitable for guiding tacrolimus dosing after 11 days of therapy in heart transplant recipients. Understanding the factors contributing to the variability in tacrolimus pharmacokinetics immediately after transplant may help improve software predictions.

    Matched MeSH terms: Immunosuppressive Agents/pharmacokinetics
  20. Amekyeh H, Billa N, Yuen KH, Chin SL
    AAPS PharmSciTech, 2015 Aug;16(4):871-7.
    PMID: 25588365 DOI: 10.1208/s12249-014-0279-4
    The gastrointestinal (GI) transit behavior of and absorption from an amphotericin B (AmB) solid lipid nanoformulation (SLN) in rats was investigated. We aimed to estimate the gastric emptying time (GET) and cecal arrival time (CAT) of AmB SLN in rats as animal models. From these two parameters, an insight on the absorption window of AmB was ascertained. Three types of SLNs, AmB, paracetamol (PAR), and sulfasalazine (SSZ), were similarly formulated using beeswax/theobroma oil composite as the lipid matrix and characterized with regard to size, viscosity, density, migration propensity within agarose gel, in vitro drug release, morphology, gastrointestinal transit, and in vivo absorption. The GET and CAT were estimated indirectly using marker drugs: PAR and sulfapyridine (SP). All three types of SLNs exhibited identical properties with regard to z-average, viscosity, relative density, and propensity to migrate. PAR was absorbed rapidly from the small intestine following emptying of the SLNs giving the T50E (time for 50% absorption of PAR) to be 1.6 h. SP was absorbed after release and microbial degradation of SSZ from SLN in the colon with a lag time of 2 h post-administration, serving as the estimated cecal arrival time of the SLNs. AmB within SLN was favorably absorbed from the small intestine, albeit slowly.
    Matched MeSH terms: Acetaminophen/pharmacokinetics; Amphotericin B/pharmacokinetics*; Sulfasalazine/pharmacokinetics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links