METHODS AND ANALYSIS: In this 12-week randomised double-blinded placebo-controlled trial for the effects of dietary TT supplementation in postmenopausal women, postmenopausal women aged 45 years and older with at least 1 year after menopause and bone mineral density T-score at the spine and/or hip 2.5 or more below the reference values will be randomly assigned to 3 daily supplements: (1) placebo group receiving 860 mg olive oil, (2) low TT group receiving 430 mg of 70% pure TTs (containing 300 mg TT) and (3) high TT group receiving 860 mg of 70% pure TTs (600 mg TT). The primary outcome measure will be urinary N-terminal telopeptide. The secondary outcome measures will be serum bone-specific alkaline phosphatase, receptor activator of nuclear factor-κB ligand, osteoprotegerin, urinary 8-hydroxy-2'-deoxyguanosine and quality of life. At 0, 6 and 12 weeks, the following will be assessed: (1) primary and secondary outcome measures; (2) serum TT and tocopherol concentrations; (3) physical activity and food frequency questionnaires. Liver function will be monitored every 6 weeks for safety. 'Intent-to-treat' principle will be employed for data analysis. A model of repeated measurements with random effect error terms will be applied. Analysis of covariance, χ2 analysis and regression will be used for comparisons.
ETHICS AND DISSEMINATION: This study was approved by the Bioethics Committee of the Texas Tech University Health Sciences Center. The findings of this trial will be submitted to a peer-reviewed journal in the areas of bone or nutrition and international conferences.
TRIAL REGISTRATION NUMBER: NCT02058420; results.
MATERIALS AND METHODS: A total of 32 female Wistar rats were randomly divided into four groups. The baseline group was sacrificed at the start of the study, and another group was sham operated. The remaining rats were ovariectomized and either given olive oil as a vehicle or treated with tocotrienol at a dose of 60 mg/kg body weight. After four weeks of treatment, blood was withdrawn for the measurement of interleukin-1 (IL1) and interleukin-6 (IL6) (bone resorbing cytokines), serum osteocalcin (a bone formation marker) and pyridinoline (a bone resorption marker).
RESULTS: Tocotrienol supplementation in ovariectomized rats significantly reduced the levels of osteocalcin, IL1 and IL6. However, it did not alter the serum pyridinoline level.
CONCLUSION: Tocotrienol prevented osteoporotic bone loss by reducing the high bone turnover rate associated with estrogen deficiency. Therefore, tocotrienol has the potential to be used as an anti-osteoporotic agent in postmenopausal women.