Displaying publications 21 - 24 of 24 in total

Abstract:
Sort:
  1. Alizadeh M, Kadir MR, Fadhli MM, Fallahiarezoodar A, Azmi B, Murali MR, et al.
    J Orthop Res, 2013 Sep;31(9):1447-54.
    PMID: 23640802 DOI: 10.1002/jor.22376
    Posterior instrumentation is a common fixation method used to treat thoracolumbar burst fractures. However, the role of different cross-link configurations in improving fixation stability in these fractures has not been established. A 3D finite element model of T11-L3 was used to investigate the biomechanical behavior of short (2 level) and long (4 level) segmental spine pedicle screw fixation with various cross-links to treat a hypothetical L1 vertebra burst fracture. Three types of cross-link configurations with an applied moment of 7.5 Nm and 200 N axial force were evaluated. The long construct was stiffer than the short construct irrespective of whether the cross-links were used (p < 0.05). The short constructs showed no significant differences between the cross-link configurations. The XL cross-link provided the highest stiffness and was 14.9% stiffer than the one without a cross-link. The long construct resulted in reduced stress to the adjacent vertebral bodies and screw necks, with 66.7% reduction in bending stress on L2 when the XL cross-link was used. Thus, the stability for L1 burst fracture fixation was best achieved by using long segmental posterior instrumentation constructs and an XL cross-link configuration. Cross-links did not improved stability when a short structure was used.
    Matched MeSH terms: Lumbar Vertebrae/surgery
  2. Haji Mohd Amin MZ, Beng JTB, Young BTY, Faruk Seman NA, Ching TS, Chek WC
    J Orthop Surg (Hong Kong), 2019 4 9;27(2):2309499019840083.
    PMID: 30955449 DOI: 10.1177/2309499019840083
    Cardiac arrest during scoliosis surgery is rare in idiopathic scoliosis. We present a case of cardiorespiratory collapse during corrective surgery in a young patient with idiopathic scoliosis. A diagnosis of venous air embolism was made by exclusion. A cardiorespiratory resuscitation was performed in supine position. Patient recovered without any sequelae and had operation completed 6 weeks later.
    Matched MeSH terms: Lumbar Vertebrae/surgery
  3. Chiu CK, Lisitha KA, Elias DM, Yong VW, Chan CYW, Kwan MK
    J Orthop Surg (Hong Kong), 2018 10 26;26(3):2309499018806700.
    PMID: 30352524 DOI: 10.1177/2309499018806700
    BACKGROUND: This prospective clinical-radiological study was conducted to determine whether the dynamic mobility stress radiographs can predict the postoperative vertebral height restoration, kyphosis correction, and cement volume injected after vertebroplasty.

    METHODS: Patients included had the diagnosis of significant back pain caused by osteoporotic vertebral compression fracture secondary to trivial injury. All the patients underwent routine preoperative sitting lateral spine radiograph, supine stress lateral spine radiograph, and supine anteroposterior spine radiograph. The radiological parameters recorded were anterior vertebral height (AVH), middle vertebral height (MVH), posterior vertebral height (PVH), MVH level below, wedge endplate angle (WEPA), and regional kyphotic angle (RKA). The supine stress versus sitting difference (SSD) for all the above parameters were calculated.

    RESULTS: A total of 28 patients (4 males; 24 females) with the mean age of 75.6 ± 7.7 years were recruited into this study. The mean cement volume injected was 5.5 ± 1.8 ml. There was no difference between supine stress and postoperative radiographs for AVH ( p = 0.507), PVH ( p = 0.913) and WEPA ( p = 0.379). The MVH ( p = 0.026) and RKA ( p = 0.005) were significantly less in the supine stress radiographs compared to postoperative radiographs. There was significant correlation ( p < 0.05) between supine stress and postoperative AVH, MVH, PVH, WEPA, and RKA. The SSD for AVH, PVH, WEPA, and RKA did not have significant correlation with the cement volume ( p > 0.05). Only the SSD-MVH had significant correlation with cement volume, but the correlation was weak ( r = 0.39, p = 0.04).

    CONCLUSIONS: Dynamic mobility stress radiographs can predict the postoperative vertebral height restoration and kyphosis correction after vertebroplasty for thoracolumbar osteoporotic fracture with intravertebral clefts. However, it did not reliably predict the amount of cement volume injected as it was affected by other factors.

    Matched MeSH terms: Lumbar Vertebrae/surgery
  4. Choy WJ, Phan K, Diwan AD, Ong CS, Mobbs RJ
    BMC Musculoskelet Disord, 2018 Aug 16;19(1):290.
    PMID: 30115053 DOI: 10.1186/s12891-018-2213-5
    BACKGROUND: Lumbar intervertebral disc herniation is a common cause of lower back and leg pain, with surgical intervention (e.g. discectomy to remove the herniated disc) recommended after an appropriate period of conservative management, however the existing or increased breach of the annulus fibrosus persists with the potential of reherniation. Several prosthesis and techniques to reduce re-herniation have been proposed including implantation of an annular closure device (ACD) - Barricaid™ and an annular tissue repair system (AR) - Anulex-Xclose™. The aim of this meta-analysis is to assist surgeons determine a potential approach to reduce incidences of recurrent lumbar disc herniation and assess the current devices regarding their outcomes and complications.

    METHODS: Four electronic full-text databases were systematically searched through September 2017. Data including outcomes of annular closure device/annular repair were extracted. All results were pooled utilising meta-analysis with weighted mean difference and odds ratio as summary statistics.

    RESULTS: Four studies met inclusion criteria. Three studies reported the use of Barricaid (ACD) while one study reported the use of Anulex (AR). A total of 24 symptomatic reherniation were reported among 811 discectomies with ACD/AR as compared to 51 out of 645 in the control group (OR: 0.34; 95% CI: 0.20,0.56; I2 = 0%; P 

    Matched MeSH terms: Lumbar Vertebrae/surgery*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links