Displaying publications 21 - 40 of 49 in total

Abstract:
Sort:
  1. Yap PT, Paramesran R
    IEEE Trans Pattern Anal Mach Intell, 2005 Dec;27(12):1996-2002.
    PMID: 16355666
    Legendre moments are continuous moments, hence, when applied to discrete-space images, numerical approximation is involved and error occurs. This paper proposes a method to compute the exact values of the moments by mathematically integrating the Legendre polynomials over the corresponding intervals of the image pixels. Experimental results show that the values obtained match those calculated theoretically, and the image reconstructed from these moments have lower error than that of the conventional methods for the same order. Although the same set of exact Legendre moments can be obtained indirectly from the set of geometric moments, the computation time taken is much longer than the proposed method.
    Matched MeSH terms: Imaging, Three-Dimensional/methods
  2. Adeshina AM, Hashim R, Khalid NE, Abidin SZ
    Interdiscip Sci, 2012 Sep;4(3):161-72.
    PMID: 23292689 DOI: 10.1007/s12539-012-0132-y
    CT and MRI scans are widely used in medical diagnosis procedures, but they only produce 2-D images. However, the human anatomical structure, the abnormalities, tumors, tissues and organs are in 3-D. 2-D images from these devices are difficult to interpret because they only show cross-sectional views of the human structure. Consequently, such circumstances require doctors to use their expert experiences in the interpretation of the possible location, size or shape of the abnormalities, even for large datasets of enormous amount of slices. Previously, the concept of reconstructing 2-D images to 3-D was introduced. However, such reconstruction model requires high performance computation, may either be time-consuming or costly. Furthermore, detecting the internal features of human anatomical structure, such as the imaging of the blood vessels, is still an open topic in the computer-aided diagnosis of disorders and pathologies. This paper proposes a volume visualization framework using Compute Unified Device Architecture (CUDA), augmenting the widely proven ray casting technique in terms of superior qualities of images but with slow speed. Considering the rapid development of technology in the medical community, our framework is implemented on Microsoft.NET environment for easy interoperability with other emerging revolutionary tools. The framework was evaluated with brain datasets from the department of Surgery, University of North Carolina, United States, containing around 109 MRA datasets. Uniquely, at a reasonably cheaper cost, our framework achieves immediate reconstruction and obvious mappings of the internal features of human brain, reliable enough for instantaneous locations of possible blockages in the brain blood vessels.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  3. Majeed A, Mt Piah AR, Ridzuan Yahya Z
    PLoS One, 2016;11(3):e0149921.
    PMID: 26967643 DOI: 10.1371/journal.pone.0149921
    Maxillofacial trauma are common, secondary to road traffic accident, sports injury, falls and require sophisticated radiological imaging to precisely diagnose. A direct surgical reconstruction is complex and require clinical expertise. Bio-modelling helps in reconstructing surface model from 2D contours. In this manuscript we have constructed the 3D surface using 2D Computerized Tomography (CT) scan contours. The fracture part of the cranial vault are reconstructed using GC1 rational cubic Ball curve with three free parameters, later the 2D contours are flipped into 3D with equidistant z component. The constructed surface is represented by contours blending interpolant. At the end of this manuscript a case report of parietal bone fracture is also illustrated by employing this method with a Graphical User Interface (GUI) illustration.
    Matched MeSH terms: Imaging, Three-Dimensional/methods
  4. Moosavi Tayebi R, Wirza R, Sulaiman PS, Dimon MZ, Khalid F, Al-Surmi A, et al.
    J Cardiothorac Surg, 2015;10:58.
    PMID: 25896185 DOI: 10.1186/s13019-015-0249-2
    Computerized tomographic angiography (3D data representing the coronary arteries) and X-ray angiography (2D X-ray image sequences providing information about coronary arteries and their stenosis) are standard and popular assessment tools utilized for medical diagnosis of coronary artery diseases. At present, the results of both modalities are individually analyzed by specialists and it is difficult for them to mentally connect the details of these two techniques. The aim of this work is to assist medical diagnosis by providing specialists with the relationship between computerized tomographic angiography and X-ray angiography.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  5. Liew YM, McLaughlin RA, Chan BT, Abdul Aziz YF, Chee KH, Ung NM, et al.
    Phys Med Biol, 2015 Apr 7;60(7):2715-33.
    PMID: 25768708 DOI: 10.1088/0031-9155/60/7/2715
    Cine MRI is a clinical reference standard for the quantitative assessment of cardiac function, but reproducibility is confounded by motion artefacts. We explore the feasibility of a motion corrected 3D left ventricle (LV) quantification method, incorporating multislice image registration into the 3D model reconstruction, to improve reproducibility of 3D LV functional quantification. Multi-breath-hold short-axis and radial long-axis images were acquired from 10 patients and 10 healthy subjects. The proposed framework reduced misalignment between slices to subpixel accuracy (2.88 to 1.21 mm), and improved interstudy reproducibility for 5 important clinical functional measures, i.e. end-diastolic volume, end-systolic volume, ejection fraction, myocardial mass and 3D-sphericity index, as reflected in a reduction in the sample size required to detect statistically significant cardiac changes: a reduction of 21-66%. Our investigation on the optimum registration parameters, including both cardiac time frames and number of long-axis (LA) slices, suggested that a single time frame is adequate for motion correction whereas integrating more LA slices can improve registration and model reconstruction accuracy for improved functional quantification especially on datasets with severe motion artefacts.
    Matched MeSH terms: Imaging, Three-Dimensional/methods
  6. Jalalian A, Mashohor S, Mahmud R, Karasfi B, Iqbal Saripan M, Ramli AR
    J Digit Imaging, 2017 Dec;30(6):796-811.
    PMID: 28429195 DOI: 10.1007/s10278-017-9958-5
    Computed tomography laser mammography (Eid et al. Egyp J Radiol Nucl Med, 37(1): p. 633-643, 1) is a non-invasive imaging modality for breast cancer diagnosis, which is time-consuming and challenging for the radiologist to interpret the images. Some issues have increased the missed diagnosis of radiologists in visual manner assessment in CTLM images, such as technical reasons which are related to imaging quality and human error due to the structural complexity in appearance. The purpose of this study is to develop a computer-aided diagnosis framework to enhance the performance of radiologist in the interpretation of CTLM images. The proposed CAD system contains three main stages including segmentation of volume of interest (VOI), feature extraction and classification. A 3D Fuzzy segmentation technique has been implemented to extract the VOI. The shape and texture of angiogenesis in CTLM images are significant characteristics to differentiate malignancy or benign lesions. The 3D compactness features and 3D Grey Level Co-occurrence matrix (GLCM) have been extracted from VOIs. Multilayer perceptron neural network (MLPNN) pattern recognition has developed for classification of the normal and abnormal lesion in CTLM images. The performance of the proposed CAD system has been measured with different metrics including accuracy, sensitivity, and specificity and area under receiver operative characteristics (AROC), which are 95.2, 92.4, 98.1, and 0.98%, respectively.
    Matched MeSH terms: Imaging, Three-Dimensional/methods
  7. Atan IK, Lin S, Dietz HP, Herbison P, Wilson PD, ProLong Study Group
    J Ultrasound Med, 2018 Dec;37(12):2829-2839.
    PMID: 29675869 DOI: 10.1002/jum.14641
    OBJECTIVES: This study aimed to ascertain the association between levator avulsion and pelvic organ prolapse (POP).

    METHODS: This was a cross-sectional study involving 195 women enrolled in a longitudinal cohort study and seen 20 years after an index birth. All had a standardized patient-administered questionnaire, the International Continence Society Pelvic Organ Prolapse Quantification assessment and 4D translabial ultrasound. Main outcome measures were objective POP clinically and on translabial ultrasound. Postimaging assessment of levator integrity and sonographically determined pelvic organ descent was done blinded against other data.

    RESULTS: Of 195 women who were seen a mean of 23 (range, 19.4-46.2) years after their first birth, one declined ultrasound assessment and was excluded, leaving 194. Mean age was 50.2 (range 36.9-66.5) years with a mean body mass index (BMI) of 27.6 (range, 18.3-54.3) kg/m2 . Median parity was 3 (range 1-14). Ninety-one percent (n = 176) had delivered vaginally. Eighteen percent (n = 34) were symptomatic of prolapse. Clinically, 36% (n = 69) had significant POP. Levator avulsion was diagnosed in 16% (n = 31). Mean levator avulsion defect score was 2.2 (range, 0-12). On univariate analysis, levator avulsion and levator avulsion defect score were associated with clinically and sonographically significant POP, that is, odds ratio 2.6 (1.2-5.7), P = .01; and odds ratio 3.3 (1.4-7.7); P = .003, respectively; Ba (P 

    Matched MeSH terms: Imaging, Three-Dimensional/methods
  8. Kahaki SMM, Arshad H, Nordin MJ, Ismail W
    PLoS One, 2018;13(7):e0200676.
    PMID: 30024921 DOI: 10.1371/journal.pone.0200676
    Image registration of remotely sensed imagery is challenging, as complex deformations are common. Different deformations, such as affine and homogenous transformation, combined with multimodal data capturing can emerge in the data acquisition process. These effects, when combined, tend to compromise the performance of the currently available registration methods. A new image transform, known as geometric mean projection transform, is introduced in this work. As it is deformation invariant, it can be employed as a feature descriptor, whereby it analyzes the functions of all vertical and horizontal signals in local areas of the image. Moreover, an invariant feature correspondence method is proposed as a point matching algorithm, which incorporates new descriptor's dissimilarity metric. Considering the image as a signal, the proposed approach utilizes a square Eigenvector correlation (SEC) based on the Eigenvector properties. In our experiments on standard test images sourced from "Featurespace" and "IKONOS" datasets, the proposed method achieved higher average accuracy relative to that obtained from other state of the art image registration techniques. The accuracy of the proposed method was assessed using six standard evaluation metrics. Furthermore, statistical analyses, including t-test and Friedman test, demonstrate that the method developed as a part of this study is superior to the existing methods.
    Matched MeSH terms: Imaging, Three-Dimensional/methods
  9. Ahmed HMA, Versiani MA, De-Deus G, Dummer PMH
    Int Endod J, 2018 Oct;51(10):1182-1183.
    PMID: 30191599 DOI: 10.1111/iej.12928
    Matched MeSH terms: Imaging, Three-Dimensional/methods
  10. Farook TH, Jamayet NB, Asif JA, Din AS, Mahyuddin MN, Alam MK
    Sci Rep, 2021 04 19;11(1):8469.
    PMID: 33875672 DOI: 10.1038/s41598-021-87240-9
    Palatal defects are rehabilitated by fabricating maxillofacial prostheses called obturators. The treatment incorporates taking deviously unpredictable impressions to facsimile the palatal defects into plaster casts for obturator fabrication in the dental laboratory. The casts are then digitally stored using expensive hardware to prevent physical damage or data loss and, when required, future obturators are digitally designed, and 3D printed. Our objective was to construct and validate an economic in-house smartphone-integrated stereophotogrammetry (SPINS) 3D scanner and to evaluate its accuracy in designing prosthetics using open source/free (OS/F) digital pipeline. Palatal defect models were scanned using SPINS and its accuracy was compared against the standard laser scanner for virtual area and volumetric parameters. SPINS derived 3D models were then used to design obturators by using (OS/F) software. The resultant obturators were virtually compared against standard medical software designs. There were no significant differences in any of the virtual parameters when evaluating the accuracy of both SPINS, as well as OS/F derived obturators. However, limitations in the design process resulted in minimal dissimilarities. With further improvements, SPINS based prosthetic rehabilitation could create a viable, low cost method for rural and developing health services to embrace maxillofacial record keeping and digitised prosthetic rehabilitation.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  11. Lu TY, Kadir K, Ngeow WC, Othman SA
    Sci Rep, 2017 11 01;7(1):14819.
    PMID: 29093554 DOI: 10.1038/s41598-017-14829-4
    This study aimed to determine the prevalence of double eyelid among two main Mongoloid ethnicities, the Malays and Chinese who reside in Malaysia. We also measured their periorbital tissue parameters for application in anthropology, optometry, ophthalmology, oculoplastic surgery and maxillofacial trauma surgery. The images of the 103 Malay and 97 Chinese volunteers were captured using indirect 3D photogrammetry, and quantitative measurement was obtained using the software provided by the manufacturer. All Malays and 70.1% of Chinese in this cross section population had double eyelid on both eyes. The mean pretarsal skin height was 3.99 mm for the Malays and 2.29 mm for the Chinese. The Malays appeared to have shorter eyebrow height (11.10 mm) compared to the Chinese (11.79 mm). An opposite pattern could be seen in the measurement of upper eyelid crease height between the Malays (8.33 mm) and the Chinese (4.91 mm). Of note, the intercanthal distance of the Chinese (IDC = 35.85 mm) was wider and their interpupillary distance was narrower (IPD = 62.85 mm) compared to the Malays' (ICD = 34.21 mm; IPD = 64.04 mm). In conclusion, there were significant differences in the prevalence of double eyelid and periorbital tissue measurements between the Malays and Chinese.
    Matched MeSH terms: Imaging, Three-Dimensional/methods
  12. Givehchi S, Safari MJ, Tan SK, Md Shah MNB, Sani FBM, Azman RR, et al.
    Phys Med, 2018 Jan;45:198-204.
    PMID: 29373248 DOI: 10.1016/j.ejmp.2017.09.137
    PURPOSE: Accurate determination of the bifurcation angle and correlation with plaque buildup may lead to the prediction of coronary artery disease (CAD). This work evaluates two techniques to measure bifurcation angles in 3D space using coronary computed tomography angiography (CCTA).

    MATERIALS AND METHODS: Nine phantoms were fabricated with different bifurcation angles ranging from 55.3° to 134.5°. General X-ray and CCTA were employed to acquire 2D and 3D images of the bifurcation phantoms, respectively. Multiplanar reformation (MPR) and volume rendering technique (VRT) were used to measure the bifurcation angle between the left anterior descending (LAD) and left circumflex arteries (LCx). The measured angles were compared with the true values to determine the accuracy of each measurement technique. Inter-observer variability was evaluated. The two techniques were further applied on 50 clinical CCTA cases to verify its clinical value.

    RESULTS: In the phantom setting, the mean absolute differences calculated between the true and measured angles by MPR and VRT were 2.4°±2.2° and 3.8°±2.9°, respectively. Strong correlation was found between the true and measured bifurcation angles. Furthermore, no significant differences were found between the bifurcation angles measured using either technique. In clinical settings, large difference of 12.0°±10.6° was found between the two techniques.

    CONCLUSION: In the phantom setting, both techniques demonstrated a significant correlation to the true bifurcation angle. Despite the lack of agreement of the two techniques in the clinical context, our findings in phantoms suggest that MPR should be preferred to VRT for the measurement of coronary bifurcation angle by CCTA.

    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  13. Abas A, Mokhtar NH, Ishak MH, Abdullah MZ, Ho Tian A
    Comput Math Methods Med, 2016;2016:6143126.
    PMID: 27239221 DOI: 10.1155/2016/6143126
    This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  14. Liew TS, Schilthuizen M
    PLoS One, 2016;11(6):e0157069.
    PMID: 27280463 DOI: 10.1371/journal.pone.0157069
    Quantitative analysis of organismal form is an important component for almost every branch of biology. Although generally considered an easily-measurable structure, the quantification of gastropod shell form is still a challenge because many shells lack homologous structures and have a spiral form that is difficult to capture with linear measurements. In view of this, we adopt the idea of theoretical modelling of shell form, in which the shell form is the product of aperture ontogeny profiles in terms of aperture growth trajectory that is quantified as curvature and torsion, and of aperture form that is represented by size and shape. We develop a workflow for the analysis of shell forms based on the aperture ontogeny profile, starting from the procedure of data preparation (retopologising the shell model), via data acquisition (calculation of aperture growth trajectory, aperture form and ontogeny axis), and data presentation (qualitative comparison between shell forms) and ending with data analysis (quantitative comparison between shell forms). We evaluate our methods on representative shells of the genera Opisthostoma and Plectostoma, which exhibit great variability in shell form. The outcome suggests that our method is a robust, reproducible, and versatile approach for the analysis of shell form. Finally, we propose several potential applications of our methods in functional morphology, theoretical modelling, taxonomy, and evolutionary biology.
    Matched MeSH terms: Imaging, Three-Dimensional/methods
  15. Hashim N, Jamalludin Z, Ung NM, Ho GF, Malik RA, Phua VC
    Asian Pac J Cancer Prev, 2014;15(13):5259-64.
    PMID: 25040985
    BACKGROUND: CT based brachytherapy allows 3-dimensional (3D) assessment of organs at risk (OAR) doses with dose volume histograms (DVHs). The purpose of this study was to compare computed tomography (CT) based volumetric calculations and International Commission on Radiation Units and Measurements (ICRU) reference-point estimates of radiation doses to the bladder and rectum in patients with carcinoma of the cervix treated with high-dose-rate (HDR) intracavitary brachytherapy (ICBT).

    MATERIALS AND METHODS: Between March 2011 and May 2012, 20 patients were treated with 55 fractions of brachytherapy using tandem and ovoids and underwent post-implant CT scans. The external beam radiotherapy (EBRT) dose was 48.6 Gy in 27 fractions. HDR brachytherapy was delivered to a dose of 21 Gy in three fractions. The ICRU bladder and rectum point doses along with 4 additional rectal points were recorded. The maximum dose (DMax) to rectum was the highest recorded dose at one of these five points. Using the HDR plus 2.6 brachytherapy treatment planning system, the bladder and rectum were retrospectively contoured on the 55 CT datasets. The DVHs for rectum and bladder were calculated and the minimum doses to the highest irradiated 2cc area of rectum and bladder were recorded (D2cc) for all individual fractions. The mean D2cc of rectum was compared to the means of ICRU rectal point and rectal DMax using the Student's t-test. The mean D2cc of bladder was compared with the mean ICRU bladder point using the same statistical test .The total dose, combining EBRT and HDR brachytherapy, were biologically normalized to the conventional 2 Gy/fraction using the linear-quadratic model. (α/β value of 10 Gy for target, 3 Gy for organs at risk).

    RESULTS: The total prescribed dose was 77.5 Gy α/β10. The mean dose to the rectum was 4.58 ± 1.22 Gy for D 2cc, 3.76 ± 0.65 Gy at D ICRU and 4.75 ± 1.01 Gy at DMax. The mean rectal D 2cc dose differed significantly from the mean dose calculated at the ICRU reference point (p<0.005); the mean difference was 0.82 Gy (0.48 -1.19 Gy). The mean EQD2 was 68.52 ± 7.24 Gy α/β3 for D 2cc, 61.71 ± 2.77 Gy α/β3 at D ICRU and 69.24 ± 6.02 Gy α/β3 at DMax. The mean ratio of D 2cc rectum to D ICRU rectum was 1.25 and the mean ratio of D 2cc rectum to DMax rectum was 0.98 for all individual fractions. The mean dose to the bladder was 6.00 ± 1.90 Gy for D 2cc and 5.10 ± 2.03 Gy at D ICRU. However, the mean D 2cc dose did not differ significantly from the mean dose calculated at the ICRU reference point (p=0.307); the mean difference was 0.90 Gy (0.49-1.25 Gy). The mean EQD2 was 81.85 ± 13.03 Gy α/β3 for D 2cc and 74.11 ± 19.39 Gy α/β3 at D ICRU. The mean ratio of D 2cc bladder to D ICRU bladder was 1.24. In the majority of applications, the maximum dose point was not the ICRU point. On average, the rectum received 77% and bladder received 92% of the prescribed dose.

    CONCLUSIONS: OARs doses assessed by DVH criteria were higher than ICRU point doses. Our data suggest that the estimated dose to the ICRU bladder point may be a reasonable surrogate for the D 2cc and rectal DMax for D 2cc. However, the dose to the ICRU rectal point does not appear to be a reasonable surrogate for the D 2cc.

    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  16. Nusee Z, Ibrahim N, Rus RM, Ismail H
    Taiwan J Obstet Gynecol, 2014 Mar;53(1):12-6.
    PMID: 24767639 DOI: 10.1016/j.tjog.2013.01.028
    To determine the accuracy of bladder volume (BV) measurement and to identify factors that influenced the ultrasound bladder scanner (UBS) measurement of BV in postpartum women compared with transurethral catheterization.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  17. Hani AF, Kumar D, Malik AS, Razak R
    Magn Reson Imaging, 2013 Sep;31(7):1059-67.
    PMID: 23731535 DOI: 10.1016/j.mri.2013.01.007
    Osteoarthritis is a common joint disorder that is most prevalent in the knee joint. Knee osteoarthritis (OA) can be characterized by the gradual loss of articular cartilage (AC). Formation of lesion, fissures and cracks on the cartilage surface has been associated with degenerative AC and can be measured by morphological assessment. In addition, loss of proteoglycan from extracellular matrix of the AC can be measured at early stage of cartilage degradation by physiological assessment. In this case, a biochemical phenomenon of cartilage is used to assess the changes at early degeneration of AC. In this paper, a method to measure local sodium concentration in AC due to proteoglycan has been investigated. A clinical 1.5-T magnetic resonance imaging (MRI) with multinuclear spectroscopic facility is used to acquire sodium images and quantify local sodium content of AC. An optimised 3D gradient-echo sequence with low echo time has been used for MR scan. The estimated sodium concentration in AC region from four different data sets is found to be ~225±19mmol/l, which matches the values that has been reported for the normal AC. This study shows that sodium images acquired at clinical 1.5-T MRI system can generate an adequate quantitative data that enable the estimation of sodium concentration in AC. We conclude that this method is potentially suitable for non-invasive physiological (sodium content) measurement of articular cartilage.
    Matched MeSH terms: Imaging, Three-Dimensional/methods
  18. Saidin S, Abdul Kadir MR, Sulaiman E, Abu Kasim NH
    J Dent, 2012 Jun;40(6):467-74.
    PMID: 22366313 DOI: 10.1016/j.jdent.2012.02.009
    The aim of this study was to analyse micromotion and stress distribution at the connections of implants and four types of abutments: internal hexagonal, internal octagonal, internal conical and trilobe.
    Matched MeSH terms: Imaging, Three-Dimensional/methods
  19. Wong SC, Nawawi O, Ramli N, Abd Kadir KA
    Acad Radiol, 2012 Jun;19(6):701-7.
    PMID: 22578227 DOI: 10.1016/j.acra.2012.02.012
    The aim of this study was to compare conventional two-dimensional (2D) digital subtraction angiography (DSA) with three-dimensional (3D) rotational DSA in the investigation of intracranial aneurysm in terms of detection, size measurement, neck diameter, neck delineation, and relationship with surrounding vessels. A further aim was to compare radiation dose, contrast volume, and procedural time between the two protocols.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  20. Rijal OM, Abdullah NA, Isa ZM, Davaei FA, Noor NM, Tawfiq OF
    PMID: 22255484 DOI: 10.1109/IEMBS.2011.6091261
    Standardized digital images of maxillary dental casts of 47 subjects were analyzed using MATLAB software whereby the two hamular notches and the incisive papilla defines the Cartesian vertical and horizontal axes, as well as the origin. The angle and length of the midpoints of the anterior teeth, mesiobuccal and distobuccal cusp of the posterior teeth were measured from the origin and denoted as θ(1), …, θ(18) and l(1), …, l(18) respectively. These values were collectively used to represent the shape of each dental cast. Clustering and principal component analyses were employed to find possible groups of dental arches using the above measure of shape. The main result of this study is that the 3 groups of dental arch shape may be represented by the novel feature vector v(k) = (θ(k)(1), l(k)(1), θ(k)(3), l(k)(3), θ(k)(5), l(k)(5), θ(k)(13), l(k)(13)), k = 1, 2, 3. Knowledge of v(k) implies three impression trays should be sufficient in a particular prosthetic dentistry application for Malaysian patients. Further, given that v(k) are accurately measured they may be potential candidates as evidence in specific application of forensic dentistry.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links