METHODS: A 24 h plaque re-growth, double-blinded, randomized crossover trial was carried out. Participants (n = 14) randomly rinsed with test formulation, 0.12% chlorhexidine (control) and placebo mouthwashes for 24 h. A week before the trial, all participants received scaling, polishing and oral hygiene education. On the trial day, the participants received polishing at baseline and rinsed with 15 ml of randomly allocated mouthwash twice daily without oral hygiene measures. After 24 h, plaque index was scored and then the participants entered a 6-days washout period with regular oral hygiene measures. The same protocol was repeated for the next 2 mouthwashes.
RESULTS: The results were expressed as mean (±SD) plaque index. The test mouthwash (0.931 ± 0.372) significantly reduced plaque accumulation when compared with placebo (1.440 ± 0.498, p 0.0167).
CONCLUSIONS: The test mouthwash has an anti-plaque effect for a 24 h period. Longer-term clinical studies are highly encouraged to investigate its anti-plaque effect for longer periods.
TRIAL REGISTRATION: This study was registered in ClinicalTrials.gov as NCT02624336 in December 3, 2015.
AIMS AND OBJECTIVES: To compare the effectiveness of commercially available 0.2% chlorhexidine gluconate mouthrinse and dill seed oil mouthrinse on plaque levels and gingivitis.
MATERIAL AND METHODS: A randomized controlled, double blind parallel arm study was conducted over 90 days on 90 subjects. The subjects were randomly divided into 2 groups and baseline data was collected using Loe and Silness gingival index and Quigley Hein plaque index and oral prophylaxis was performed on all the subjects. The mouthrinses included in the present study were dill seed oil and Hexodent (0.2% chlorhexidine gluconate). Intervention regarding the mouthrinsing was given to the subjects and were followed up for 45 days and 90 days, after this post intervention changes were assessed using the respective indices.
RESULTS: It was observed that there is no significant difference in gingival & plaque scores among two mouthrinses from baseline to 45 days and 90 days. It was observed that there is statistical difference in gingival and plaque scores when compared with baseline to 45 days (p<0.001), baseline to 90 days (p<0.001) and 45 days to 90 days (p<0.001) when intergroup comparisons were done.
CONCLUSION: It was concluded that dill seed oil and Hexodent (0.2% chlorhexidine gluconate) mouthrinse have similar antiplaque and antigingival effectiveness.
OBJECTIVE: To assess the effects of toothpaste containing aqueous SH extract on plaque-induced gingivitis following orthodontic bond-up and to identify the optimal concentration of SH.
METHODS: A single-centred; triple-blinded randomized controlled trial conducted in 40 patients with FA. Participants were randomly assigned to one of the four groups with toothpaste which has concentration of SH extract of 0%, 3%, 6% or 9%. The statistician, the participants and the researchers involved in data collection were kept blinded from the allocation. Gingival Index (GI) and Bleeding on Probing (BOP) for each group were taken at day 0,7,14 and 30.
RESULTS: 9% of SH-containing toothpaste (SHCT) showed most substantial result as there were significance difference of GI (P = 0.020) from Day 7 to 14 and from Day 0 to 14 (P = 0.020). There was also significance difference of BOP from Day 0 to 14 (P = 0.022) and from Day 0 to 30 (P = 0.027). Significant difference was seen in 3% of SHCT group with the decrease of GI (P = 0.004) from Day 1 to 14. There were no significant difference noted for 0% and 6% SHCT.
CONCLUSION: The 9% SHCT is the most effective concentration to reduce both the gingival inflammation (up to day 14) and bleeding on probing (up to day 30).
Materials and Methods: Subgingival plaque samples were collected from 60 individuals with varying severity of chronic periodontitis and 30 individuals with a clinically healthy periodontium. The samples were subjected to PCR analysis to identify P. gingivalis, followed by heteroduplex analysis to identify the strain diversity in a given sample. Bacterial culture was carried out as a comparative standard.
Results: Of the 56 samples that were positive for P. gingivalis by PCR, 54 samples yielded eight different heteroduplex patterns. Analysis of these patterns indicated that two strains of P. gingivalis were present in 41 individuals (45.6%) and three strains were present in 13 individuals (14.4%). Detection of P. gingivalis by PCR was significantly more in the periodontitis group as compared to the healthy group.
Conclusions: Species-specific PCR and heteroduplex analysis provide a simple and accurate method to analyse the strain diversity of P. gingivalis. P. gingivalis was detected in both healthy periodontal sites as well as sites with periodontitis. The presence of two or three P. gingivalis strains was seen in 60% of the samples.
METHODS: Twenty patients with periodontitis were recruited for the trial. Following random allocation of either quadrants of the selected jaw to test or control treatment, conventional non-surgical periodontal therapy (NSPT) was performed. In addition, the test side received adjunct photodynamic therapy. Probing depth (PD), clinical attachment level, bleeding on probing (BoP) and plaque scores (PS%) were recorded at phase 0 (baseline), phase 1 (immediately after NSPT), phase 2 (7 days following NSPT), phase 3 (1 month following NSPT) and phase 4 (3 months following NSPT). Subgingival plaque samples for quantification of Aa by real-time polymerase chain reaction was performed at phases 0, 1, 2 and 4.
RESULTS: There was a significant clinical improvement at phases 3 and 4 compared with baseline while BoP reduced significantly only in the test group at phase 4. However, no difference in the quantification of Aa was detected between the groups.
CONCLUSIONS: Within the limits of the study, PDT adjunct to scaling and root planing does not lead to quantitative reduction of Aa in periodontitis patients.
METHODS: Two-fold serial micro-dilution method was used to measure minimal inhibitory concentration (MIC) of aqueous extracts of Gt, Sp and their combinations. Adsorption to hexadecane was used to determine the cell surface hydrophobicity (CSH) of bacterial cells. Glass beads were used to mimic the hard tissue surfaces, and were coated with saliva to develop experimental pellicles for the adhesion of the primary colonizing bacteria.
RESULTS: Gt aqueous extracts exhibited better anti-plaque effect than Sp aqueous extracts. Their combination, equivalent to 1/4 and 1/2 of MIC values of Gt and Sp extracts respectively, showed synergistic anti-plaque properties with fractional inhibitory concentration (FIC) equal to 0.75. This combination was found to significantly reduce CSH (p<0.05) and lower the adherence ability (p<0.003) towards experimental pellicles.
CONCLUSION: Combination between Gt and Sp aqueous extracts exhibited synergistic anti-plaque activity, and could be used as a useful active agent to produce oral health care products.
METHODS: Saliva-coated glass beads (sGB) were used as substratum for the adhesion of a mixed-bacterial suspension of Streptococcus mutans, Streptococcus sanguinis and Streptococcus mitis. Biofilms formed on sGB at 3h and 24h represented the early and established-plaque models. The biofilms were exposed to three doses of the sweeteners (10%), introduced at three intervals to simulate the exposure of dental plaque to sugar during three consecutive food intakes. The treated sGB were (i) examined under the SEM and (ii) collected for turbidity reading. The absorbance indicated the amount of plaque mass produced. Analysis was performed comparative to sucrose as control.
RESULTS: Higher rate of bacterial adherence was determined during the early compared to established phases of formation. Comparative to the sweeteners, sucrose showed a 40% increase in bacterial adherence and produced 70% more plaque-mass. Bacterial counts and SEM micrographs exhibited absence of matrix in all the sweetener-treated biofilms at the early phase of formation. At the established phase, presence of matrix was detected but at significantly lower degree compared to sucrose (p<0.05).
CONCLUSION: Alternatives sweeteners promoted the formation of oral biofilm with lighter mass and lower bacterial adherence. Hence, suggesting alternative sweeteners as potential antiplaque agents.
Aims: The objective of this study is to investigate if the subgingival plaque biofilm resistance can be reduced using doxycycline in the presence of low-intensity electric field (bioelectric effect).
Settings and Design: The study was an in vitro microbiological study.
Materials and Methods: Subgingival plaque samples from chronic periodontitis patients were collected to grow subgingival plaque biofilms on hydroxyapatite disks. Hydroxyapatite disks with the plaque biofilms from each patient were divided into four groups: (i) No intervention - control, (ii) current alone - CU; (iii) doxycycline - AB, and (iv) combined treatment - CU + AB. After respective treatments, the disks were anaerobically incubated for 48 h, the biofilm was dispersed and subcultured and colony-forming unit/mL was estimated in all the four groups.
Statistical Analysis: Statistical analysis was done using Mann-Whitney and Kruskal-Wallis tests for intergroup comparisons. T-test was done to assess the difference in current flow between the groups CU and CU + AB.
Results: All the three treatment modalities showed antibacterial effect. Application of current alone resulted in reduced bacterial growth than control group. Doxycycline alone resulted in reduction in bacterial counts better than control and current alone groups. The combination treatment showed greatest inhibition of bacterial colonies.
Conclusion: The ability of doxycycline antibiotic in inhibiting plaque biofilm was significantly enhanced by application of a weak electric field (5 volts for 2 min).