Objective: To examine associations between maternal gestational CVH and offspring CVH.
Design, Setting, and Participants: This cohort study used data from the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study (examinations: July 2000-April 2006) and HAPO Follow-Up Study (examinations: February 2013-December 2016). The analyses included 2302 mother-child dyads, comprising 48% of HAPO Follow-Up Study participants, in an ancillary CVH study. Participants were from 9 field centers across the United States, Barbados, United Kingdom, China, Thailand, and Canada.
Exposures: Maternal gestational CVH at a target of 28 weeks' gestation, based on 5 metrics: body mass index, blood pressure, total cholesterol level, glucose level, and smoking. Each metric was categorized as ideal, intermediate, or poor using pregnancy guidelines. Total CVH was categorized as follows: all ideal metrics, 1 or more intermediate (but 0 poor) metrics, 1 poor metric, or 2 or more poor metrics.
Main Outcomes and Measures: Offspring CVH at ages 10 to 14 years, based on 4 metrics: body mass index, blood pressure, total cholesterol level, and glucose level. Total CVH was categorized as for mothers.
Results: Among 2302 dyads, the mean (SD) ages were 29.6 (2.7) years for pregnant mothers and 11.3 (1.1) years for children. During pregnancy, the mean (SD) maternal CVH score was 8.6 (1.4) out of 10. Among pregnant mothers, the prevalence of all ideal metrics was 32.8% (95% CI, 30.6%-35.1%), 31.7% (95% CI, 29.4%-34.0%) for 1 or more intermediate metrics, 29.5% (95% CI, 27.2%-31.7%) for 1 poor metric, and 6.0% (95% CI, 3.8%-8.3%) for 2 or more poor metrics. Among children of mothers with all ideal metrics, the prevalence of all ideal metrics was 42.2% (95% CI, 38.4%-46.2%), 36.7% (95% CI, 32.9%-40.7%) for 1 or more intermediate metrics, 18.4% (95% CI, 14.6%-22.4%) for 1 poor metric, and 2.6% (95% CI, 0%-6.6%) for 2 or more poor metrics. Among children of mothers with 2 or more poor metrics, the prevalence of all ideal metrics was 30.7% (95% CI, 22.0%-40.4%), 28.3% (95% CI, 19.7%-38.1%) for 1 or more intermediate metrics, 30.7% (95% CI, 22.0%-40.4%) for 1 poor metric, and 10.2% (95% CI, 1.6%-20.0%) for 2 or more poor metrics. The adjusted relative risks associated with 1 or more intermediate, 1 poor, and 2 or more poor (vs all ideal) metrics, respectively, in mothers during pregnancy were 1.17 (95% CI, 0.96-1.42), 1.66 (95% CI, 1.39-1.99), and 2.02 (95% CI, 1.55-2.64) for offspring to have 1 poor (vs all ideal) metrics, and the relative risks were 2.15 (95% CI, 1.23-3.75), 3.32 (95% CI,1.96-5.62), and 7.82 (95% CI, 4.12-14.85) for offspring to have 2 or more poor (vs all ideal) metrics. Additional adjustment for categorical birth factors (eg, preeclampsia) did not fully explain these significant associations (eg, relative risk for association between 2 or more poor metrics among mothers during pregnancy and 2 or more poor metrics among offspring after adjustment for an extended set of birth factors, 6.23 [95% CI, 3.03-12.82]).
Conclusions and Relevance: In this multinational cohort, better maternal CVH at 28 weeks' gestation was significantly associated with better offspring CVH at ages 10 to 14 years.
METHODS: We conducted a systematic review of published CVD mortality studies that reported ASMR as an indicator for premature mortality measurement. All English articles published as of October 2022 were searched in four electronic databases: PubMed, Scopus, Web of Science (WoS), and the Cochrane Central Register of Controlled Trials (CENTRAL). We computed pooled estimates of ASMR using random-effects meta-analysis. We assessed heterogeneity from the selected studies using the I2 statistic. Subgroup analyses and meta regression analysis was performed based on sex, main CVD types, income country level, study time and age group. The analysis was performed using R software with the "meta" and "metafor" packages.
RESULTS: A total of 15 studies met the inclusion criteria. The estimated global ASMR for premature mortality from total CVD was 96.04 per 100,000 people (95% CI: 67.18, 137.31). Subgroup analysis by specific CVD types revealed a higher ASMR for ischemic heart disease (ASMR = 15.57, 95% CI: 11.27, 21.5) compared to stroke (ASMR = 12.36, 95% CI: 8.09, 18.91). Sex-specific differences were also observed, with higher ASMRs for males (37.50, 95% CI: 23.69, 59.37) than females (15.75, 95% CI: 9.61, 25.81). Middle-income countries had a significantly higher ASMR (90.58, 95% CI: 56.40, 145.48) compared to high-income countries (21.42, 95% CI: 15.63, 29.37). Stratifying by age group indicated that the age groups of 20-64 years and 30-74 years had a higher ASMR than the age group of 0-74 years. Our multivariable meta-regression model suggested significant differences in the adjusted ASMR estimates for all covariates except study time.
CONCLUSIONS: This meta-analysis synthesized a comprehensive estimate of the worldwide burden of premature CVD mortality. Our findings underscore the continued burden of premature CVD mortality, particularly in middle-income countries. Addressing this issue requires targeted interventions to mitigate the high risk of premature CVD mortality in these vulnerable populations.
METHODS: This was a cross-sectional survey using mall intercept interviews. Malaysians aged ≥30 years without known CVD were recruited. They were asked for their intention to undergo CVD health checks and associated factors. The factors included seven internal factors that were related to individuals' attitude, perception and preparedness for CVD health checks and two external factors that were related to external resources. Hierarchical ordinal regression analysis was used to evaluate the importance of the factors on intention to undergo CVD health checks, for men and women separately.
RESULTS: 397 participants were recruited, 60% were women. For men, internal factors explained 31.6% of the variances in likeliness and 9.6% of the timeline to undergo CVD health checks, with 1.2% and 1.8% added respectively when external factors were sequentially included. For women, internal factors explained 18.9% and 22.1% of the variances, with 3.1% and 4.2% added with inclusion of the external factors. In men, perceived drawbacks of health checks was a significant negative factor associated with likeliness to undergo CVD health checks (coefficient = -1.093; 95%CI:-1.592 to -0.594), and timeline for checks (coefficient = -0.533; 95%CI:-0.975 to -0.091). In women, readiness to handle outcomes following health checks was significantly associated with likeliness to undergo the checks (coefficient = 0.575; 95%CI: 0.063 to 1.087), and timeline for checks (coefficient = 0.645; 95%CI: 0.162 to 1.128). Both external factors 1) influence by significant others (coefficient = 0.406; 95%CI: 0.013 to 0.800) and 2) external barriers (coefficient = -0.440; 95%CI:-0.869 to -0.011) were also significantly associated with likeliness to undergo CVD health checks in women.
CONCLUSIONS: Both men and women were influenced by internal factors in their intention to undergo CVD health checks, and women were also influenced by external factors. Interventions to encourage CVD health checks need to focus on internal factors and be gender sensitive.