Displaying publications 21 - 39 of 39 in total

Abstract:
Sort:
  1. Rafique R, Khan KM, Arshia, Kanwal, Chigurupati S, Wadood A, et al.
    Bioorg Chem, 2020 01;94:103195.
    PMID: 31451297 DOI: 10.1016/j.bioorg.2019.103195
    The current study describes the discovery of novel inhibitors of α-glucosidase and α-amylase enzymes. For that purpose, new hybrid analogs of N-hydrazinecarbothioamide substituted indazoles 4-18 were synthesized and fully characterized by EI-MS, FAB-MS, HRFAB-MS, 1H-, and 13C NMR spectroscopic techniques. Stereochemistry of the imine double bond was established by NOESY measurements. All derivatives 4-18 with their intermediates 1-3, were evaluated for in vitro α-glucosidase and α-amylase enzyme inhibition. It is worth mentioning that all synthetic compounds showed good inhibition potential in the range of 1.54 ± 0.02-4.89 ± 0.02 µM for α-glucosidase and for α-amylase 1.42 ± 0.04-4.5 ± 0.18 µM in comparison with the standard acarbose (IC50 value of 1.36 ± 0.01 µM). In silico studies were carried out to rationalize the mode of binding interaction of ligands with the active site of enzymes. Moreover, enzyme inhibitory kinetic characterization was also performed to understand the mechanism of enzyme inhibition.
    Matched MeSH terms: Carbon-13 Magnetic Resonance Spectroscopy
  2. Hasan HA, Abdulmalek E, Rahman MBA, Shaari KB, Yamin BM, Chan KW
    Chem Cent J, 2018 Dec 20;12(1):145.
    PMID: 30570683 DOI: 10.1186/s13065-018-0509-z
    BACKGROUND: Although the development of antibiotic and antioxidant manufacturing, the problem of bacterial resistance and food and/or cosmetics oxidation still needs more efforts to design new derivatives which can help to minimize these troubles. Benzimidazo[1,2-c]quinazolines are nitrogen-rich heterocyclic compounds that possess many pharmaceutical properties such as antimicrobial, anticonvulsant, immunoenhancer, and anticancer.

    RESULTS: A comparative study between two methods, (microwave-assisted and conventional heating approaches), was performed to synthesise a new quinazoline derivative from 2-(2-aminophenyl)-1H-benzimidazole and octanal to produce 6-heptyl-5,6-dihydrobenzo[4,5]imidazo[1,2-c]quinazoline (OCT). The compound was characterised using FTIR, 1H and 13C NMR, DIMS, as well as X-ray crystallography. The most significant peak in the 13C NMR spectrum is C-7 at 65.5 ppm which confirms the cyclisation process. Crystal structure analysis revealed that the molecule grows in the monoclinic crystal system P21/n space group and stabilised by an intermolecular hydrogen bond between the N1-H1A…N3 atoms. The crystal packing analysis showed that the molecule adopts zig-zag one dimensional chains. Fluorescence study of OCT revealed that it produces blue light when expose to UV-light and its' quantum yield equal to 26%. Antioxidant activity, which included DPPH· and ABTS·+ assays was also performed and statistical analysis was achieved via a paired T-test using Minitab 16 software with P 

    Matched MeSH terms: Carbon-13 Magnetic Resonance Spectroscopy
  3. Murtihapsari M, Salam S, Kurnia D, Darwati D, Kadarusman K, Abdullah FF, et al.
    Nat Prod Res, 2021 Mar;35(6):937-944.
    PMID: 31210054 DOI: 10.1080/14786419.2019.1611815
    A new antimalarial sterol, kaimanol (1), along with a known sterol, saringosterol (2) was isolated from the Indonesian Marine sponge, Xestospongia sp. The chemical structure of the new compound was determined on the basis of spectroscopic evidences and by comparison to those related compounds previously reported. Isolated compounds, 1 and 2 were evaluated for their antiplasmodial effect against Plasmodium falciparum 3D7 strains. Compounds 1 and 2 exhibited antiplasmodial activity with IC50 values of 359 and 0.250 nM, respectively.
    Matched MeSH terms: Carbon-13 Magnetic Resonance Spectroscopy
  4. Nazir S, Sulistyo J, Hashmi MI, Ho AL, Khan MS
    J Food Sci Technol, 2018 Aug;55(8):3026-3034.
    PMID: 30065412 DOI: 10.1007/s13197-018-3223-x
    Present study was conducted to evaluate the ability of Trichoderma viride as a source of cyclodextrin glucanotransferase that has shown transglycosylation activity in the presence of polyphenolic constituents extracted from Moringa oleifera leaves as its acceptor and wheat flour as its substrate to catalyze synthesis of polyphenolic glycosides as transglycosylation (transfer) reaction products. The enzymatic synthesized polyphenolic glycosides were then purified using octa-dodecyl-functionalized silica gel column chromatography prior to analysis using thin layer chromatography and high performance liquid chromatography and identified using nuclear magnetic resonance (NMR) spectroscopy. The high performance liquid chromatogram performed that the isolated transglycosylation products had retention times and concentration at 1.446 min (0.0017 mg/ml), 1.431 min (0.14 mg/ml), and 1.474 min (0.012 mg/ml), respectively, compared to the retention time of arbutin (1.474 min) that was applied as authentic standard for polyphenol glycoside. Moreover, observation using 1H NMR as well as 13C NMR showed that structures of the transglycosylation products were identified as gallic acid-4-O-β-glucopyranoside, ellagicacid-4-O-β-glucopyranoside, and catechin-4'-O-glucopyranoside, respectively.
    Matched MeSH terms: Carbon-13 Magnetic Resonance Spectroscopy
  5. Kadir MA, Ramli R, Yusof MSM, Ismail N, Ngah N, Haris NSH
    Data Brief, 2019 Dec;27:104651.
    PMID: 31700958 DOI: 10.1016/j.dib.2019.104651
    This paper provided comprehensive data on spectroscopic and antibacterial activities of thioureido compounds which are relevant with research article entitled "Synthesis, Spectroscopic Studies and Antibacterial Activity of New Lauroyl Thiourea Amino Acid Derivatives" [1]. Based on the reported study, four new thioureido derivatives, namely 3-(3-dodecanoyl-thioureido)propionic acid (R1), 2-(3-dodecanoyl-thioureido)-3-methyl butyric acid (R2), (3-dodecanoyl-thioureido)acetic acid (R3) and 2-(3-dodecanoyl-thioureido)-3-phenyl propionic acid (R4) were characterized by elemental analysis, Fourier Transform Infrared (FTIR), 1H Nuclear Magnetic Resonance (1H NMR) and 13C Nuclear Magnetic Resonance (13C NMR), and Ultraviolet Visible spectroscopy (UV-Vis). The preliminary results from antibacterial assay which were tested against Gram-positive bacteria such as Bacillus subtilis, Staphylococcus epidermidis, Staphylococcus aureus and Gram-negative bacteria such as Escherichia coli, Salmonella typhimurium are also described.
    Matched MeSH terms: Carbon-13 Magnetic Resonance Spectroscopy
  6. Rasib SZM, Ahmad Z, Khan A, Akil HM, Othman MBH, Hamid ZAA, et al.
    Int J Biol Macromol, 2018 Mar;108:367-375.
    PMID: 29222015 DOI: 10.1016/j.ijbiomac.2017.12.021
    In this study, chitosan-poly(methacrylic acid-co-N-isopropylacrylamide) [chitosan-p(MAA-co-NIPAM)] hydrogels were synthesized by emulsion polymerization. In order to be used as a carrier for drug delivery systems, the hydrogels had to be biocompatible, biodegradable and multi-responsive. The polymerization was performed by copolymerize MAA and NIPAM with chitosan polymer to produce a chitosan-based hydrogel. Due to instability during synthesis and complexity of components to produce the hydrogel, further study at different times of reaction is important to observe the synthesis process, the effect of end product on swelling behaviour and the most important is to find the best way to control the hydrogel synthesis in order to have an optimal swelling behaviour for drug release application. Studied by using Fourier transform infra-red (FTIR) spectroscopy found that, the synthesized was successfully produced stable chitosan-based hydrogel with PNIPAM continuously covered the outer surface of hydrogel which influenced much on the stability during synthesis. The chitosan and PMAA increased the zeta potential of the hydrogel and the chitosan capable to control shrinkage above human body temperature. The chitosan-p(MAA-co-NIPAM) hydrogels also responses to pH and temperature thus improved the ability to performance as a drug carrier.
    Matched MeSH terms: Carbon-13 Magnetic Resonance Spectroscopy
  7. Abbasi MA, Ramzan MS, Ur-Rehman A, Siddiqui SZ, Hassan M, Ali Shah SA, et al.
    Iran J Pharm Res, 2020;19(1):487-506.
    PMID: 32922502 DOI: 10.22037/ijpr.2019.13084.11362
    The synthesis of a novel series of bi-heterocyclic propanamides, 7a-l, was accomplished by S-substitution of 5-[(2-amino-1,3-thiazol-4-yl)methyl]-1,3,4-oxadiazol-2-thiol (3). The synthesis was initiated from ethyl 2-(2-amino-1,3-thiazol-4-yl)acetate (1) which was converted to corresponding hydrazide, 2, by hydrazine hydrate in methanol. The refluxing of hydrazide, 2, with carbon disulfide in basic medium, resulted in 5-[(2-amino-1,3-thiazol-4-yl)methyl]-1,3,4-oxadiazol-2-thiol (3). A series of electrophiles, 6a-l, was synthesized by stirring un/substituted anilines (4a-l) with 3-bromopropanoyl chloride (5) in a basic aqueous medium. Finally, the targeted compounds, 7a-l, were acquired by stirring 3 with newly synthesized electrophiles, 6a-l, in DMF using LiH as a base and an activator. The structures of these bi-heterocyclic propanamides were confirmed through spectroscopic techniques, such as IR, 1H-NMR, 13C-NMR, and EI-MS. These molecules were tested for their urease inhibitory potential, whereby, the whole series exhibited very promising activity against this enzyme. Their cytotoxic behavior was ascertained through hemolysis and it was observed that all these were less cytotoxic agents. The in-silico molecular docking analysis of these molecules was also in full agreement with their in-vitro enzyme inhibition data.
    Matched MeSH terms: Carbon-13 Magnetic Resonance Spectroscopy
  8. Dahiya R, Rampersad S, Ramnanansingh TG, Kaur K, Kaur R, Mourya R, et al.
    Iran J Pharm Res, 2020;19(3):156-170.
    PMID: 33680019 DOI: 10.22037/ijpr.2020.15405.13075
    Synthesis of a natural proline-rich cyclopolypeptide - rolloamide A was carried out by coupling of tri- and tetrapeptide units Boc-Phe-Pro-Val-OMe and Boc-Pro-Leu-Pro-Ile-OMe after proper deprotection at carboxyl and amino terminals using carbodiimide chemistry in alkaline environment followed by cyclization of linear heptapeptide segment in the presence of base. The structure of synthesized peptide was confirmed by spectral techniques including FTIR, 1H NMR, 13C NMR, MS analyses. Newly synthesized peptide was subjected to biological screening against pathogenic microbes and earthworms. Cyclopeptide 8 possessed promising activity against pathogenic fungi Candida albicans (ZOI: 24 mm, MIC: 6 μg/mL) and Gram-negative bacteria Pseudomonas aeruginosa (ZOI: 27 mm, MIC: 6 μg/mL) and Klebsiella pneumoniae (ZOI: 23 mm, MIC: 12.5 μg/mL), in comparison to reference drugs - griseofulvin (ZOI: 20 mm, MIC: 6 μg/mL) and ciprofloxacin (ZOI: 25 mm, MIC: 6 μg/mL/ZOI: 20 mm, MIC: 12.5 μg/mL). Also, newly synthesized heptacyclopeptide exhibited potent anthelmintic activity against earthworms Megascoplex konkanensis,Pontoscotex corethruses, and Eudrilus species (MPT/MDT ratio - 8.22-16.02/10.06-17.59 min), in comparison to standard drugs - mebendazole (MPT/MDT ratio - 10.52-18.02/12.57-19.49 min) and piperazine citrate (MPT/MDT ratio - 12.38-19.17/13.44-22.17 min).
    Matched MeSH terms: Carbon-13 Magnetic Resonance Spectroscopy
  9. Abosadiya HM, Anouar el H, Hasbullah SA, Yamin BM
    PMID: 25748989 DOI: 10.1016/j.saa.2015.01.092
    A new isomers of thiourea derivatives, namely N-(4-chlorobutanoyl)-N'-(2-methylphenyl)-thiourea (1a), N-(4-chlorobutanoyl)-N'-(3-methylphenyl)thiourea (1b) and N-(4-chlorobutanoyl)-N'-(4-methylphenyl)thiourea (1c) have been synthesized by refluxing mixture of equimolar amounts of 4-chlorobutanoylisothiocyanate with 2, 3 or 4-toluidine, respectively. The three isomers were characterized by spectroscopic (UV/vis, FT-IR and NMR) and X-ray crystallography techniques. To investigate the isomerization effect on spectroscopic data, DFT and TD-DFT calculations have been carried out using five hybrid functionals (B3LYP, B3P86, CAM-B3LYP, M06-2X and PBE0) to predict UV/vis absorption bands (n→π∗ and π→π∗), (1)H and (13)C NMR chemical shifts, FT-IR vibration modes and X-ray parameters (bonds, bond angles and torsion angles) for 1a, 1b and 1c isomers. The results showed that the isomerization effect is significant on λ(MAX) absorption bands, while for IR and NMR the effect is negligible. In accordance with previous studies, B3LYP, B3P86 and PBE0 gave the most reliable to predict the excitation energies of thiourea derivatives.
    Matched MeSH terms: Carbon-13 Magnetic Resonance Spectroscopy
  10. Leong SW, Abas F, Lam KW, Shaari K, Lajis NH
    Bioorg Med Chem, 2016 08 15;24(16):3742-51.
    PMID: 27328658 DOI: 10.1016/j.bmc.2016.06.016
    In the present study, a series of 2-benzoyl-6-benzylidenecyclohexanone analogs have been synthesized and evaluated for their anti-cholinesterase activity. Among the forty-one analogs, four compounds (38, 39, 40 and 41) have been identified as lead compounds due to their highest inhibition on both AChE and BChE activities. Compounds 39 and 40 in particular exhibited highest inhibition on both AChE and BChE with IC50 values of 1.6μM and 0.6μM, respectively. Further structure-activity relationship study suggested that presence of a long-chain heterocyclic in one of the rings played a critical role in the dual enzymes' inhibition. The Lineweaver-Burk plots and docking results suggest that both compounds could simultaneously bind to the PAS and CAS regions of the enzyme. ADMET analysis further confirmed the therapeutic potential of both compounds based upon their high BBB-penetrating. Thus, 2-benzoyl-6-benzylidenecyclohexanone containing long-chain heterocyclic amine analogs represent a new class of cholinesterase inhibitor, which deserve further investigation for their development into therapeutic agents for cognitive diseases such as Alzheimer.
    Matched MeSH terms: Carbon-13 Magnetic Resonance Spectroscopy
  11. Rafiq MK, Bachmann RT, Rafiq MT, Shang Z, Joseph S, Long R
    PLoS One, 2016;11(6):e0156894.
    PMID: 27327870 DOI: 10.1371/journal.pone.0156894
    This study examined the influence of pyrolysis temperature on biochar characteristics and evaluated its suitability for carbon capture and energy production. Biochar was produced from corn stover using slow pyrolysis at 300, 400 and 500°C and 2 hrs holding time. The experimental biochars were characterized by elemental analysis, BET, FTIR, TGA/DTA, NMR (C-13). Higher heating value (HHV) of feedstock and biochars was measured using bomb calorimeter. Results show that carbon content of corn stover biochar increased from 45.5% to 64.5%, with increasing pyrolysis temperatures. A decrease in H:C and O:C ratios as well as volatile matter, coupled with increase in the concentration of aromatic carbon in the biochar as determined by FTIR and NMR (C-13) demonstrates a higher biochar carbon stability at 500°C. It was estimated that corn stover pyrolysed at 500°C could provide of 10.12 MJ/kg thermal energy. Pyrolysis is therefore a potential technology with its carbon-negative, energy positive and soil amendment benefits thus creating win- win scenario.
    Matched MeSH terms: Carbon-13 Magnetic Resonance Spectroscopy
  12. Salih AM, Ahmad MB, Ibrahim NA, Dahlan KZ, Tajau R, Mahmood MH, et al.
    Molecules, 2015;20(8):14191-211.
    PMID: 26248072 DOI: 10.3390/molecules200814191
    Over the past few decades, there has been an increasing demand for bio-based polymers and resins in industrial applications, due to their potential lower cost and environmental impact compared with petroleum-based counterparts. The present research concerns the synthesis of epoxidized palm oil acrylate (EPOLA) from an epoxidized palm oil product (EPOP) as environmentally friendly material. EPOP was acrylated by acrylic acid via a ring opening reaction. The kinetics of the acrylation reaction were monitored throughout the reaction course and the acid value of the reaction mixture reached 10 mg KOH/g after 16 h, indicating the consumption of the acrylic acid. The obtained epoxy acrylate was investigated intensively by means of FTIR and NMR spectroscopy, and the results revealed that the ring opening reaction was completed successfully with an acrylation yield about 82%. The UV free radical polymerization of EPOLA was carried out using two types of photoinitiators. The radiation curing behavior was determined by following the conversion of the acrylate groups. The cross-linking density and the hardness of the cured EPOLA films were measured to evaluate the effect of the photoinitiator on the solid film characteristics, besides, the thermal and mechanical properties were also evaluated.
    Matched MeSH terms: Carbon-13 Magnetic Resonance Spectroscopy
  13. Lay MM, Karsani SA, Malek SN
    Biomed Res Int, 2014;2014:468157.
    PMID: 24579081 DOI: 10.1155/2014/468157
    2,4',6-Trihydroxy-4-methoxybenzophenone was isolated from the ethyl acetate fraction of Phaleria macrocarpa (Scheff.) Boerl. fruits. It was found to inhibit cell proliferation in HT-29 human colon carcinoma cell line but caused little damage to WRL-68 normal human liver and MRC-5 normal human fibroblast lung cell lines. The compound was found to sharply affect the viability of HT-29 cells in a dose- and time-dependent manner. HT-29 cells treated with the compound showed morphological changes under microscopic examination such as cell shrinkage, membrane blebbing, DNA fragmentation, and the occurrence of apoptotic nuclei. The percentage of early apoptotic, late apoptotic, and dead or necrotic cells was determined by flow cytometry using annexin V-FTIC/PI staining. In addition, flow cytometry showed that, when the HT-29 cells were treated with 115 µM of the compound, it resulted in G0/G1 phase arrest in a time-dependent manner. Western blot revealed an upregulation of PUMA, Bak, Bcl-2, and Mcl-1 proteins suggesting that the compound induced apoptosis in HT-29 cells by regulating these proteins.
    Matched MeSH terms: Carbon-13 Magnetic Resonance Spectroscopy
  14. Memon AH, Ismail Z, Al-Suede FS, Aisha AF, Hamil MS, Saeed MA, et al.
    Molecules, 2015;20(8):14212-33.
    PMID: 26248073 DOI: 10.3390/molecules200814212
    Two flavanones named (2S)-7-Hydroxy-5-methoxy-6,8-dimethyl flavanone (1), (S)-5,7-dihydroxy-6,8-dimethyl-flavanone (2), along with known chalcone, namely, (E)-2',4'- dihydroxy-6'-methoxy-3',5'-dimethylchalcone (3) and two triterpenoids, namely, betulinic and ursolic acids (4 and 5), were isolated from the leaves of Syzygium campanulatum Korth (Myrtaceae). The structures of compounds (1 and 2) were determined on the basis of UV-visible, FTIR, NMR spectroscopies and LC-EIMS analytical techniques. Furthermore, new, simple, precise, selective, accurate, highly sensitive, efficient and reproducible RP-HPLC method was developed and validated for the quantitative analysis of the compounds (1-5) from S. campanulatum plants of five different age. RP-HPLC method was validated in terms of specificity, linearity (r2 ≤ 0.999), precision (2.0% RSD), and recoveries (94.4%-105%). The LOD and LOQ of these compounds ranged from 0.13-0.38 and 0.10-2.23 μg·mL-1, OPEN ACCESS respectively. Anti-proliferative activity of isolated flavanones (1 and 2) and standardized extract of S. campanulatum was evaluated on human colon cancer (HCT 116) cell line. Compounds (1 and 2) and extract revealed potent and dose-dependent activity with IC50 67.6, 132.9 and 93.4 μg·mL-1, respectively. To the best of our knowledge, this is the first study on isolation, characterization, X-ray crystallographic analysis of compounds (1 and 2) and simultaneous RP-HPLC determination of five major compounds (1-5) from different age of S. campanulatum plants.
    Matched MeSH terms: Carbon-13 Magnetic Resonance Spectroscopy
  15. Jaafaru MS, Nordin N, Rosli R, Shaari K, Bako HY, Noor NM, et al.
    Biomed Pharmacother, 2019 Nov;119:109445.
    PMID: 31541852 DOI: 10.1016/j.biopha.2019.109445
    The antioxidant and neuroprotective activity of Glucomoringin isothiocyanate (GMG-ITC) have been reported in in vivo and in vitro models of neurodegenerative diseases. However, its neuroprotective role via mitochondrial-dependent pathway in a noxious environment remains unknown. The main objective of the present study was to unveil the mitochondrial apoptotic genes' profile and prospectively link with neuroprotective activity of GMG-ITC through its ROS scavenging. The results showed that pre-treatment of differentiated SH-SY5Y cells with 1.25 μg/mL purified isolated GMG-ITC, significantly reduced reactive oxygen species (ROS) production level, compared to H2O2 control group, as evidenced by flow cytometry-based evaluation of ROS generation. Presence of GMG-ITC prior to development of oxidative stress condition, downregulated the expression of cyt-c, p53, Apaf-1, Bax, CASP3, CASP8 and CASP9 genes with concurrent upregulation of Bcl-2 gene in mitochondrial apoptotic signalling pathway. Protein Multiplex revealed significant decreased in cyt-c, p53, Apaf-1, Bax, CASP8 and CASP9 due to GMG-ITC pre-treatment in oxidative stress condition. The present findings speculated that pre-treatment with GMG-ITC may alleviate oxidative stress condition in neuronal cells by reducing ROS production level and protect the cells against apoptosis via neurodegenerative disease potential pathways.
    Matched MeSH terms: Carbon-13 Magnetic Resonance Spectroscopy
  16. Abbasi MA, Nazeer MM, Rehman A, Siddiqui SZ, Hussain G, Shah SA, et al.
    Pak J Pharm Sci, 2018 Nov;31(6):2477-2485.
    PMID: 30473521
    The aim of the present research work was synthesis of some 2-furyl[(4-aralkyl)-1-piperazinyl]methanone derivatives and to ascertain their antibacterial potential. The cytotoxicity of these molecules was also checked to find out their utility as possible therapeutic agents. The synthesis was initiated by reacting furyl(-1-piperazinyl)methanone (1) in N,N-dimethylformamide (DMF) and lithium hydride with different aralkyl halides (2a-j) to afford 2-furyl[(4-aralkyl)-1-piperazinyl]methanone derivatives (3a-j). The structural confirmation of all the synthesized compounds was done by IR, EI-MS, 1H-NMR and 13C-NMR spectral techniques and through elemental analysis. The results of in vitro antibacterial activity of all the synthesized compounds were screened against Gram-negative (S. typhi, E. coli, P. aeruginosa) and Gram-positive (B. subtilis, S. aureus) bacteria and were found to be decent inhibitors. Amongst the synthesized molecules, 3e showed lowest minimum inhibitory concentration MIC = 7.52±0.μg/mL against S. Typhi, credibly due to the presence of 2-bromobenzyl group, relative to the reference standard, ciprofloxacin, having MIC = 7.45±0.58μg/mL.
    Matched MeSH terms: Carbon-13 Magnetic Resonance Spectroscopy
  17. Abbasi MA, Anwar A, Rehman A, Siddiqui SZ, Rubab K, Shah SAA, et al.
    Pak J Pharm Sci, 2017 Sep;30(5):1715-1724.
    PMID: 29084694
    Heterocyclic molecules have been frequently investigated to possess various biological activities during the last few decades. The present work elaborates the synthesis and enzymatic inhibition potentials of a series of sulfonamides. A series of 1-arylsulfonyl-4-Phenylpiperazine (3a-n) geared up by the reaction of 1-phenylpiperazine (1) and different (un)substituted alkyl/arylsulfonyl chlorides (2a-n), under defined pH control using water as a reaction medium. The synthesized molecules were characterized by 1H-NMR, 13C-NMR, IR and EI-MS spectral data. The enzyme inhibition study was carried on α-glucosidase, lipoxygenase (LOX), acetyl cholinesterase (AChE) and butyryl cholinesterase (BChE) enzymes supported by docking simulation studies and the IC50 values rendered a few of the synthesized molecules as moderate inhibitors of these enzymes where, the compound 3e exhibited comparatively better potency against α-glucosidase enzyme. The synthesized compounds showed weak or no inhibition against LOX, AChE and BChE enzymes.
    Matched MeSH terms: Carbon-13 Magnetic Resonance Spectroscopy
  18. Faraj FL, Zahedifard M, Paydar M, Looi CY, Abdul Majid N, Ali HM, et al.
    ScientificWorldJournal, 2014;2014:212096.
    PMID: 25548779 DOI: 10.1155/2014/212096
    Two new synthesized and characterized quinazoline Schiff bases 1 and 2 were investigated for anticancer activity against MCF-7 human breast cancer cell line. Compounds 1 and 2 demonstrated a remarkable antiproliferative effect, with an IC50 value of 6.246×10(-6) mol/L and 5.910×10(-6) mol/L, respectively, after 72 hours of treatment. Most apoptosis morphological features in treated MCF-7 cells were observed by AO/PI staining. The results of cell cycle analysis indicate that compounds did not induce S and M phase arrest in cell after 24 hours of treatment. Furthermore, MCF-7 cells treated with 1 and 2 subjected to apoptosis death, as exhibited by perturbation of mitochondrial membrane potential and cytochrome c release as well as increase in ROS formation. We also found activation of caspases-3/7, -8, and -9 in compounds 1 and 2. Moreover, inhibition of NF-κB translocation in MCF-7 cells treated by compound 1 significantly exhibited the association of extrinsic apoptosis pathway. Acute toxicity results demonstrated the nontoxic nature of the compounds in mice. Our results showed significant activity towards MCF-7 cells via either intrinsic or extrinsic mitochondrial pathway and are potential candidate for further in vivo and clinical breast cancer studies.
    Matched MeSH terms: Carbon-13 Magnetic Resonance Spectroscopy
  19. Lim KT, Amanah A, Chear NJ, Zahari Z, Zainuddin Z, Adenan MI
    Exp Parasitol, 2018 Jan;184:57-66.
    PMID: 29175017 DOI: 10.1016/j.exppara.2017.11.007
    In our ongoing work searching for new trypanocidal lead compounds from Malaysian plants, two known piperidine alkaloids (+)-spectaline (1) and iso-6-spectaline (2) were isolated from the leaves of Senna spectabilis (sin. Cassia spectabilis). Analysis of the 1H and 13C NMR spectra showed that 1 and 2 presented analytical and spectroscopic data in full agreement with those published in the literature. All compounds were screened in vitro against Trypanosoma brucei rhodesiense in comparison to the standard drug pentamidine. Compound 1 and 2 inhibited growth of T. b. rhodesiense with an IC50 value of 0.41 ± 0.01 μM and 0.71 ± 0.01 μM, without toxic effect on L6 cells with associated a selectivity index of 134.92 and 123.74, respectively. These data show that piperidine alkaloids constitute a class of natural products that feature a broad spectrum of biological activities, and are potential templates for the development of new trypanocidal drugs. To our knowledge, the compounds are being reported for the first time to have inhibitory effects on T. b. rhodesiense. The ultrastructural alterations in the trypanosome induced by 1 and 2, leading to programmed cell death were characterized using electron microscopy. These alterations include wrinkling of the trypanosome surface, formation of autophagic vacuoles, disorganization of kinetoplast, and swelling of the mitochondria. These findings evidence a possible autophagic cell death.
    Matched MeSH terms: Carbon-13 Magnetic Resonance Spectroscopy
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links