Displaying publications 21 - 37 of 37 in total

Abstract:
Sort:
  1. Tan SY, Tan IK, Tan MF, Dutta A, Choo SW
    Sci Rep, 2016 10 31;6:36116.
    PMID: 27796355 DOI: 10.1038/srep36116
    On record, there are 17 species in the Yersinia genus, of which three are known to be pathogenic to human. While the chromosomal and pYV (or pCD1) plasmid-borne virulence genes as well as pathogenesis of these three species are well studied, their genomic evolution is poorly understood. Our study aims to predict the key evolutionary events that led to the emergence of pathogenic Yersinia species by analyzing gene gain-and-loss, virulence genes, and "Clustered regularly-interspaced short palindromic repeats". Our results suggest that the most recent ancestor shared by the human pathogenic Yersinia was most probably an environmental species that had adapted to the human body. This might have led to ecological specialization that diverged Yersinia into ecotypes and distinct lineages based on differential gene gain-and-loss in different niches. Our data also suggest that Y. pseudotuberculosis group might be the donor of the ail virulence gene to Y. enterocolitica. Hence, we postulate that evolution of human pathogenic Yersinia might not be totally in parallel, but instead, there were lateral gene transfer events. Furthermore, the presence of virulence genes seems to be important for the positive selection of virulence plasmid. Our studies provide better insights into the evolutionary biology of these bacteria.
    Matched MeSH terms: CRISPR-Cas Systems/genetics
  2. Wang D, Samsulrizal NH, Yan C, Allcock NS, Craigon J, Blanco-Ulate B, et al.
    Plant Physiol, 2019 02;179(2):544-557.
    PMID: 30459263 DOI: 10.1104/pp.18.01187
    Tomato (Solanum lycopersicum) is a globally important crop with an economic value in the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Shelf life is a key quality trait related to alterations in cuticle properties and remodeling of the fruit cell walls. Studies with transgenic tomato plants undertaken over the last 20 years have indicated that a range of pectin-degrading enzymes are involved in cell wall remodeling. These studies usually involved silencing of only a single gene and it has proved difficult to compare the effects of silencing these genes across the different experimental systems. Here we report the generation of CRISPR-based mutants in the ripening-related genes encoding the pectin-degrading enzymes pectate lyase (PL), polygalacturonase 2a (PG2a), and β-galactanase (TBG4). Comparison of the physiochemical properties of the fruits from a range of PL, PG2a, and TBG4 CRISPR lines demonstrated that only mutations in PL resulted in firmer fruits, although mutations in PG2a and TBG4 influenced fruit color and weight. Pectin localization, distribution, and solubility in the pericarp cells of the CRISPR mutant fruits were investigated using the monoclonal antibody probes LM19 to deesterified homogalacturonan, INRA-RU1 to rhamnogalacturonan I, LM5 to β-1,4-galactan, and LM6 to arabinan epitopes, respectively. The data indicate that PL, PG2a, and TBG4 act on separate cell wall domains and the importance of cellulose microfibril-associated pectin is reflected in its increased occurrence in the different mutant lines.
    Matched MeSH terms: CRISPR-Cas Systems*
  3. Nejat N, Rookes J, Mantri NL, Cahill DM
    Crit Rev Biotechnol, 2017 Mar;37(2):229-237.
    PMID: 26796880 DOI: 10.3109/07388551.2015.1134437
    Briskly evolving phytopathogens are dire threats to our food supplies and threaten global food security. From the recent advances made toward high-throughput sequencing technologies, understanding of pathogenesis and effector biology, and plant innate immunity, translation of these means into new control tools is being introduced to develop durable disease resistance. Effectoromics as a powerful genetic tool for uncovering effector-target genes, both susceptibility genes and executor resistance genes in effector-assisted breeding, open up new avenues to improve resistance. TALENs (Transcription Activator-Like Effector Nucleases), engineered nucleases and CRISPR (Clustered Regulatory Interspaced Short Palindromic Repeats)/Cas9 systems are breakthrough and powerful techniques for genome editing, providing efficient mechanisms for targeted crop protection strategies in disease resistance programs. In this review, major advances in plant disease management to confer durable disease resistance and novel strategies for boosting plant innate immunity are highlighted.
    Matched MeSH terms: CRISPR-Cas Systems
  4. Wadhwa R, Aggarwal T, Malyla V, Kumar N, Gupta G, Chellappan DK, et al.
    J Cell Physiol, 2019 08;234(10):16703-16723.
    PMID: 30912142 DOI: 10.1002/jcp.28482
    Chronic obstructive pulmonary disease accounts as the leading cause of mortality worldwide prominently affected by genetic and environmental factors. The disease is characterized by persistent coughing, breathlessness airways inflammation followed by a decrease in forced expiratory volume1 and exacerbations, which affect the quality of life. Determination of genetic, epigenetic, and oxidant biomarkers to evaluate the progression of disease has proved complicated and challenging. Approaches including exome sequencing, genome-wide association studies, linkage studies, and inheritance and segregation studies played a crucial role in the identification of genes, their pathways and variation in genes. This review highlights multiple approaches for biomarker and gene identification, which can be used for differential diagnosis along with the genome editing tools to study genes associated with the development of disease and models their function. Further, we have discussed the approaches to rectify the abnormal gene functioning of respiratory tissues and various novel gene editing techniques like Zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN), and clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9).
    Matched MeSH terms: CRISPR-Cas Systems
  5. Ashari KS, Roslan NS, Omar AR, Bejo MH, Ideris A, Mat Isa N
    PeerJ, 2019;7:e6948.
    PMID: 31293824 DOI: 10.7717/peerj.6948
    Salmonella enterica subsp. enterica serovar Stanley (S. Stanley) is a pathogen that contaminates food, and is related to Salmonella outbreaks in a variety of hosts such as humans and farm animals through products like dairy items and vegetables. Despite the fact that several vaccines of Salmonella strains had been constructed, none of them were developed according to serovar Stanley up to this day. This study presents results of genome sequencing and analysis on our S. Stanley UPM 517 strain taken from fecal swabs of 21-day-old healthy commercial chickens in Perak, Malaysia and used Salmonella enterica subsp. enterica serovar Typhimurium LT2 (S. Typhimurium LT2) as a reference to be compared with. First, sequencing and assembling of the Salmonella Stanley UPM 517 genome into a contiguous form were done. The work was then continued with scaffolding and gap filling. Annotation and alignment of the draft genome was performed with S. Typhimurium LT2. The other elements of virulence estimated in this study included Salmonella pathogenicity islands, resistance genes, prophages, virulence factors, plasmid regions, restriction-modification sites and the CRISPR-Cas system. The S. Stanley UPM 517 draft genome had a length of 4,736,817 bp with 4,730 coding sequence and 58 RNAs. It was discovered via genomic analysis on this strain that there were antimicrobial resistance properties toward a wide variety of antibiotics. Tcf and ste, the two fimbrial virulence clusters related with human and broiler intestinal colonizations which were not found in S. Typhimurium LT2, were atypically discovered in the S. Stanley UPM 517 genome. These clusters are involved in the intestinal colonization of human and broilers, respectively. There were seven Salmonella pathogenicity islands (SPIs) within the draft genome, which contained the virulence factors associated with Salmonella infection (except SPI-14). Five intact prophage regions, mostly comprising of the protein encoding Gifsy-1, Fels-1, RE-2010 and SEN34 prophages, were also encoded in the draft genome. Also identified were Type I-III restriction-modification sites and the CRISPR-Cas system of the Type I-E subtype. As this strain exhibited resistance toward numerous antibiotics, we distinguished several genes that had the potential for removal in the construction of a possible vaccine candidate to restrain and lessen the pervasiveness of salmonellosis and to function as an alternative to antibiotics.
    Matched MeSH terms: CRISPR-Cas Systems
  6. Wong PK, Cheah FC, Syafruddin SE, Mohtar MA, Azmi N, Ng PY, et al.
    Front Pediatr, 2021;9:592571.
    PMID: 33791256 DOI: 10.3389/fped.2021.592571
    Hereditary or developmental neurological disorders (HNDs or DNDs) affect the quality of life and contribute to the high mortality rates among neonates. Most HNDs are incurable, and the search for new and effective treatments is hampered by challenges peculiar to the human brain, which is guarded by the near-impervious blood-brain barrier. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR), a gene-editing tool repurposed from bacterial defense systems against viruses, has been touted by some as a panacea for genetic diseases. CRISPR has expedited the research into HNDs, enabling the generation of in vitro and in vivo models to simulate the changes in human physiology caused by genetic variation. In this review, we describe the basic principles and workings of CRISPR and the modifications that have been made to broaden its applications. Then, we review important CRISPR-based studies that have opened new doors to the treatment of HNDs such as fragile X syndrome and Down syndrome. We also discuss how CRISPR can be used to generate research models to examine the effects of genetic variation and caffeine therapy on the developing brain. Several drawbacks of CRISPR may preclude its use at the clinics, particularly the vulnerability of neuronal cells to the adverse effect of gene editing, and the inefficiency of CRISPR delivery into the brain. In concluding the review, we offer some suggestions for enhancing the gene-editing efficacy of CRISPR and how it may be morphed into safe and effective therapy for HNDs and other brain disorders.
    Matched MeSH terms: CRISPR-Cas Systems
  7. Alallam B, Altahhan S, Taher M, Mohd Nasir MH, Doolaanea AA
    Pharmaceuticals (Basel), 2020 Jul 22;13(8).
    PMID: 32707857 DOI: 10.3390/ph13080158
    Therapeutic gene editing is becoming more feasible with the emergence of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas) system. However, the successful implementation of CRISPR/Cas9-based therapeutics requires a safe and efficient in vivo delivery of the CRISPR components, which remains challenging. This study presents successful preparation, optimization, and characterization of alginate nanoparticles (ALG NPs), loaded with two CRISPR plasmids, using electrospray technique. The aim of this delivery system is to edit a target gene in another plasmid (green fluorescent protein (GFP)). The effect of formulation and process variables were evaluated. CRISPR ALG NPs showed mean size and zeta potential of 228 nm and -4.42 mV, respectively. Over 99.0% encapsulation efficiency was achieved while preserving payload integrity. The presence of CRISPR plasmids in the ALG NPs was confirmed by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy. The tests revealed that the nanoparticles were cytocompatible and successfully introduced the Cas9 transgene in HepG2 cells. Nanoparticles-transfected HepG2 was able to edit its target plasmid by introducing double-strand break (DSB) in GFP gene, indicating the bioactivity of CRISPR plasmids encapsulated in alginate nanoparticles. This suggests that this method is suitable for biomedical application in vitro or ex vivo. Future investigation of theses nanoparticles might result in nanocarrier suitable for in vivo delivery of CRISPR/Cas9 system.
    Matched MeSH terms: CRISPR-Cas Systems
  8. Azlan A, Obeidat SM, Theva Das K, Yunus MA, Azzam G
    PLoS Negl Trop Dis, 2021 01;15(1):e0008351.
    PMID: 33481791 DOI: 10.1371/journal.pntd.0008351
    The Asian tiger mosquito, Aedes albopictus (Ae. albopictus), is an important vector that transmits arboviruses such as dengue (DENV), Zika (ZIKV) and Chikungunya virus (CHIKV). Long noncoding RNAs (lncRNAs) are known to regulate various biological processes. Knowledge on Ae. albopictus lncRNAs and their functional role in virus-host interactions are still limited. Here, we identified and characterized the lncRNAs in the genome of an arbovirus vector, Ae. albopictus, and evaluated their potential involvement in DENV and ZIKV infection. We used 148 public datasets, and identified a total of 10, 867 novel lncRNA transcripts, of which 5,809, 4,139, and 919 were intergenic, intronic and antisense respectively. The Ae. albopictus lncRNAs shared many characteristics with other species such as short length, low GC content, and low sequence conservation. RNA-sequencing of Ae. albopictus cells infected with DENV and ZIKV showed that the expression of lncRNAs was altered upon virus infection. Target prediction analysis revealed that Ae. albopictus lncRNAs may regulate the expression of genes involved in immunity and other metabolic and cellular processes. To verify the role of lncRNAs in virus infection, we generated mutations in lncRNA loci using CRISPR-Cas9, and discovered that two lncRNA loci mutations, namely XLOC_029733 (novel lncRNA transcript id: lncRNA_27639.2) and LOC115270134 (known lncRNA transcript id: XR_003899061.1) resulted in enhancement of DENV and ZIKV replication. The results presented here provide an important foundation for future studies of lncRNAs and their relationship with virus infection in Ae. albopictus.
    Matched MeSH terms: CRISPR-Cas Systems
  9. Simon I. Okekpa, Rabiatul Basria S.M.N. Mydin, Munirah Mohd Nor, Emmanuel Jairaj Moses
    MyJurnal
    Gene manipulation tools have transformed biomedical research and improved the possibilities of their uses for therapeutic purposes. These tools have aided effective genomic modification in many organisms and have been successfully applied in biomedical engineering, biotechnology and biomedicine. They also shown a potential for therapeutic applications to alleviate genetic and non-genetic diseases. Small interfering RNA (siRNA) and clustered regularly inter-spaced short-palindromic repeat/associated-protein system (CRISPR/Cas) are two of the tools applied in genetic manipulation. This review aims to evaluate the molecular influence of siRNA and CRISPR/Cas as novel tools for genetic manipulations. This review discusses the molecular mechanism of siRNA and CRISPR/Cas, and the advantages and disadvantages of siRNA and CRISPR/Cas. This review also presents comparison between siRNA and CRISPR/Cas as potential tools for gene therapy. siRNA therapeutic applications occur through protein knockout with- out causing damage to cells. siRNA knocks down gene expression at the mRNA level, whereas CRISPR/Cas knocks out gene permanently at the DNA level. Inconclusion, gene manipulation tools have potential for applications that improve therapeutic strategies and plant-derived products, but ethical standards must be established before the clin- ical application of gene editing.

    Matched MeSH terms: CRISPR-Cas Systems
  10. Valdiani A, Talei D, Lattoo SK, Ortiz R, Rasmussen SK, Batley J, et al.
    Crit Rev Biotechnol, 2017 Sep;37(6):803-816.
    PMID: 28049346 DOI: 10.1080/07388551.2016.1260525
    Andrographis paniculata (Burm. f.) Wall. ex Nees. (AP) is a hermaphroditic, self-compatible, and habitual inbreeding plant. Its main bioactive component is andrographolide, which is capable of inducing autophagic cell death in some human cancer cells and helps fight HIV/AIDS. Increasing the andrographolide content by investigating the genetic mechanisms controlling its biosynthesis in order to improve and develop high-yielding cultivars are the main breeding targets for AP. However, there might exist some limitations or barriers for crossability within AP accessions. Recently, this problem was addressed in AP by using a combination of crossbreeding and biotechnology-aided genetic methods. This review emphasizes that development of a breeding platform in a hard-to-breed plant, such as AP, requires the involvement of a broad range of methods from classical genetics to molecular breeding. To this end, a phenological stage (for example, flowering and stigma development) can be simplified to a quantitative morphological trait (for example, bud or stigma length) to be used as an index to express the highest level of receptivity in order to manage outcrossing. The outcomes of the basic crossability research can be then employed in diallel mating and crossbreeding. This review explains how genomic data could produce useful information regarding genetic distance and its influence on the crossability of AP accessions. Our review indicates that co-dominant DNA markers, such as microsatellites, are also capable of resolving the evolutionary pathway and cryptic features of plant populations and such information can be used to select the best breeding strategy. This review also highlights the importance of proteomic analysis as a breeding tool. In this regard, protein diversification, as well as the impact of normal and stress-responsive proteins on morphometric and physiological behaviors, could be used in breeding programs. These findings have immense potential for improving plant production and, therefore, can be regarded as prospective breeding platforms for medicinal plants that have an autogamous mode of reproduction. Finally, this review suggests that novel site-directed genome editing approaches such as TALENs (Transcription Activator-Like Effector Nucleases) and CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein-9 nuclease) systems together with other new plant breeding technologies (NPBT) should simultaneously be taken into consideration for improvement of pharmaceutical plants.
    Matched MeSH terms: CRISPR-Cas Systems
  11. Kuruvilla J, Sasmita AO, Ling APK
    Neurol Sci, 2018 Nov;39(11):1827-1835.
    PMID: 30076486 DOI: 10.1007/s10072-018-3521-0
    BACKGROUND AND PURPOSE: The central nervous system (CNS) faces unique difficulties in attaining permanent therapy for neurodegenerative disorder (ND). Genomic level forms of therapy have garnered interest in the recent decade, with the novel CRISPR/Cas9 gene editing tool continuing to be explored due to its efficiency, safety, and adaptability to varying conditions. With the aid of viral vectors as transport vectors, the gene editing tool has produced promising in vitro and in vivo findings in study models. Thus, this review focuses on the recent advancements and update of CRISPR/Cas9 to combat neurodegenerative diseases.

    METHODS: Articles detailing potential applications of CRISPR/Cas9 in neurodegenerative settings were retrieved from PubMed and Google Scholar with the keywords "CRISPR," "gene editing," and "neurodegenerative diseases." Relevant information was collected and critically reviewed.

    RESULTS: The utility of CRISPR/Cas9 coupled with viral transduction ranges from the disruption of amyloid precursor protein (APP) production at a genomic level in Alzheimer's disease (AD) to the deletion of varying exon portions of the Dmd gene in Duchenne muscular dystrophy (DMD) which would increase dystrophin expression. This usage of CRISPR/Cas9 also extends to experimentally ameliorate the neurodegenerative effects caused by viral infections.

    CONCLUSION: The CRISPR/Cas9 gene editing tool is a powerful arsenal in the field of gene therapy and molecular medicine; hence, more research should be called to focus on the ample potential this tool has to offer in the field of neurodegenerative diseases.

    Matched MeSH terms: CRISPR-Cas Systems
  12. Luo C, Wang Q, Guo R, Zhang J, Zhang J, Zhang R, et al.
    Virus Res, 2022 Dec;322:198937.
    PMID: 36174845 DOI: 10.1016/j.virusres.2022.198937
    Outbreaks of Pseudorabies (PR) by numerous highly virulent and antigenic variant Pseudorabies virus (PRV) strains have been causing severe economic losses to the pig industry in China since 2011. However, current commercial vaccines are often unable to induce thorough protective immunity. In this study, a TK/gI/gE deleted recombinant PRV expressing GM-CSF was developed by using the HDR-CRISPR/Cas9 system. Here, a four-sgRNA along with the Cas9D10A targeting system was utilized for TK/gI/gE gene deletion and GM-CSF insertion. Our study showed that the four-sgRNA targeting system appeared to have higher knock-in efficiency for PRVs editing. The replication of the recombinant PRVs were slightly lower than that of the parental strain, but they appeared to have similar properties in terms of growth curves and plaque morphology. The mice vaccinated with the recombinant PRV expressing GM-CSF via intramuscular injection showed no obvious clinical symptoms, milder pathological lesions, and were completely protected against wild-type PRV challenge. When compared to the triple gene-deleted PRV, the gB antibodies and neutralizing antibody titers were improved and the immunized mice appeared to have lower viral load and higher mRNA levels of IL-2, IL-4, IL-6, and IFN-γ in spleens. Our study offers a novel approach for recombinant PRV construction, and the triple gene-deleted PRV expressing GM-CSF could serve as a promising vaccine candidate for PR control.
    Matched MeSH terms: CRISPR-Cas Systems
  13. Hong KW, Asmah Hani AW, Nurul Aina Murni CA, Pusparani RR, Chong CK, Verasahib K, et al.
    Infect Genet Evol, 2017 Oct;54:263-270.
    PMID: 28711373 DOI: 10.1016/j.meegid.2017.07.015
    In this study, we report the comparative genomics and phylogenetic analysis of Corynebacterium diphtheriae strain B-D-16-78 that was isolated from a clinical specimen in 2016. The complete genome of C. diphtheriae strain B-D-16-78 was sequenced using PacBio Single Molecule, Real-Time sequencing technology and consists of a 2,474,151-bp circular chromosome with an average GC content of 53.56%. The core genome of C. diphtheriae was also deduced from a total of 74 strains with complete or draft genome sequences and the core genome-based phylogenetic analysis revealed close genetic relationship among strains that shared the same MLST allelic profile. In the context of CRISPR-Cas system, which confers adaptive immunity against re-invading DNA, 73 out of 86 spacer sequences were found to be unique to Malaysian strains which harboured only type-II-C and/or type-I-E-a systems. A total of 48 tox genes which code for the diphtheria toxin were retrieved from the 74 genomes and with the exception of one truncated gene, only nucleotide substitutions were detected when compared to the tox gene sequence of PW8. More than half were synonymous substitution and only two were nonsynonymous substitutions whereby H24Y was predicted to have a damaging effect on the protein function whilst T262V was predicted to be tolerated. Both toxigenic and non-toxigenic toxin-gene bearing strains have been isolated in Malaysia but the repeated isolation of toxigenic strains with the same MLST profile suggests the possibility of some of these strains may be circulating in the population. Hence, efforts to increase herd immunity should be continued and supported by an effective monitoring and surveillance system to track, manage and control outbreak of cases.
    Matched MeSH terms: CRISPR-Cas Systems
  14. Baxter JS, Johnson N, Tomczyk K, Gillespie A, Maguire S, Brough R, et al.
    Am J Hum Genet, 2021 Jul 01;108(7):1190-1203.
    PMID: 34146516 DOI: 10.1016/j.ajhg.2021.05.013
    A combination of genetic and functional approaches has identified three independent breast cancer risk loci at 2q35. A recent fine-scale mapping analysis to refine these associations resulted in 1 (signal 1), 5 (signal 2), and 42 (signal 3) credible causal variants at these loci. We used publicly available in silico DNase I and ChIP-seq data with in vitro reporter gene and CRISPR assays to annotate signals 2 and 3. We identified putative regulatory elements that enhanced cell-type-specific transcription from the IGFBP5 promoter at both signals (30- to 40-fold increased expression by the putative regulatory element at signal 2, 2- to 3-fold by the putative regulatory element at signal 3). We further identified one of the five credible causal variants at signal 2, a 1.4 kb deletion (esv3594306), as the likely causal variant; the deletion allele of this variant was associated with an average additional increase in IGFBP5 expression of 1.3-fold (MCF-7) and 2.2-fold (T-47D). We propose a model in which the deletion allele of esv3594306 juxtaposes two transcription factor binding regions (annotated by estrogen receptor alpha ChIP-seq peaks) to generate a single extended regulatory element. This regulatory element increases cell-type-specific expression of the tumor suppressor gene IGFBP5 and, thereby, reduces risk of estrogen receptor-positive breast cancer (odds ratio = 0.77, 95% CI 0.74-0.81, p = 3.1 × 10-31).
    Matched MeSH terms: CRISPR-Cas Systems
  15. Chellappan DK, Yap WS, Bt Ahmad Suhaimi NA, Gupta G, Dua K
    Panminerva Med, 2018 Sep;60(3):117-131.
    PMID: 29696964 DOI: 10.23736/S0031-0808.18.03455-9
    The prevalence of type 2 diabetes mellitus (T2DM) has been increasing at an alarming rate. With an increased understanding of the pathophysiology and pathogenesis of T2DM, various new therapeutic options have been developed to target different key defects in T2DM. Incremental innovations of existing therapies either through unprecedented drug combinations, modified drug molecules, or improved delivery systems are capable to nullify some of the undesirable side effects of traditional therapies as well as to enhance effectiveness. The existing administration routes include inhalation, nasal, buccal, parenteral and oral. Newer drug targets such as protein kinase B (Akt/PKB), AMP-activated protein kinase (AMPK), sirtuin (SIRT), and others are novel approaches that act via different mechanisms and possibly treating T2DM of distinct variations and aetiologies. Other therapies such as endobarrier, gene therapy, and stem cell technology utilize advanced techniques to treat T2DM, and the potential of these therapies are still being explored. Gene therapy is plausible to fix the underlying pathology of T2DM instead of using traditional reactive treatments, especially with the debut of Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated protein9 (CRISPR-Cas9) gene editing tool. Molecular targets in T2DM are also being extensively studied as it could target the defects at the molecular level. Furthermore, antibody therapies and vaccinations are also being developed against T2DM; but the ongoing clinical trials are relatively lesser and the developmental progress is slower. Although, there are many therapies designed to cure T2DM, each of them has their own advantages and disadvantages. The preference for the treatment plan usually depends on the health status of the patient and the treatment goal. Therefore, an ideal treatment should take patient's compliance, efficacy, potency, bioavailability, and other pharmacological and non-pharmacological properties into account.
    Matched MeSH terms: CRISPR-Cas Systems
  16. Li H, Zhao L, Lau YS, Zhang C, Han R
    Oncogene, 2021 01;40(1):177-188.
    PMID: 33110234 DOI: 10.1038/s41388-020-01523-5
    Colorectal cancer is the third leading cause of cancer-related deaths in the United States and the third most common cancer in men and women. Around 20% colon cancer cases are closely linked with colitis. Both environmental and genetic factors are thought to contribute to colon inflammation and tumor development. However, the genetic factors regulating colitis and colon tumorigenesis remain elusive. Since reactive oxygen species (ROS) is vitally involved in tissue inflammation and tumorigenesis, here we employed a genome-wide CRISPR knockout screening approach to systemically identify the genetic factors involved in the regulation of oxidative stress. Next generation sequencing (NGS) showed that over 600 gRNAs including the ones targeting LGALS2 were highly enriched in cells survived after sublethal H2O2 challenge. LGALS2 encodes the glycan-binding protein Galectin 2 (Gal2), which is predominantly expressed in the gastrointestinal tract and downregulated in human colon tumors. To examine the role of Gal2 in colitis, we employed the dextran sodium sulfate (DSS)-induced acute colitis model in mice with (WT) or without Lgals2 (Gal2-KO) and showed that Gal2 deficiency ameliorated DSS-induced colitis. We further demonstrated that Gal2-KO mice developed significantly larger tumors than WT mice using Azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colorectal cancer model. We found that STAT3 phosphorylation was significantly increased in Gal2-deficient tumors as compared to those in WT mice. Gal2 overexpression decreased the proliferation of human colon tumor epithelial cells and blunted H2O2-induced STAT3 phosphorylation. Overall, our results demonstrate that Gal2 plays a suppressive role in colon tumor growth and highlights the therapeutic potential of Gal2 in colon cancer.
    Matched MeSH terms: CRISPR-Cas Systems
  17. Braun DA, Rao J, Mollet G, Schapiro D, Daugeron MC, Tan W, et al.
    Nat Genet, 2017 Oct;49(10):1529-1538.
    PMID: 28805828 DOI: 10.1038/ng.3933
    Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS complex, in 37 individuals from 32 families with GAMOS. CRISPR-Cas9 knockout in zebrafish and mice recapitulated the human phenotype of primary microcephaly and resulted in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibited cell proliferation, which human mutations did not rescue. Furthermore, knockdown of these genes impaired protein translation, caused endoplasmic reticulum stress, activated DNA-damage-response signaling, and ultimately induced apoptosis. Knockdown of OSGEP or TP53RK induced defects in the actin cytoskeleton and decreased the migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identified four new monogenic causes of GAMOS, describe a link between KEOPS function and human disease, and delineate potential pathogenic mechanisms.
    Matched MeSH terms: CRISPR-Cas Systems
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links