Displaying publications 21 - 22 of 22 in total

Abstract:
Sort:
  1. Chen L, Xie W, Luo Y, Ding X, Fu B, Gopinath SCB, et al.
    PMID: 33786878 DOI: 10.1002/bab.2155
    A highly sensitive silica-alumina (Si-Al)-modified capacitive non-Faradaic glucose biosensor was introduced to monitor gestational diabetes. Glucose oxidase (GOx) was attached to the Si-Al electrode surface as the probe through amine-modification followed by glutaraldehyde premixed GOx as aldehyde-amine chemistry. This Si-Al (∼50 nm) modified electrode surface has increased the current flow upon binding of GOx with glucose. Capacitance values were increased by increasing the glucose concentrations. A mean capacitance value was plotted and the detection limit was found as 0.03 mg/mL with the regression coefficient value, R² = 0.9782 [y = 0.8391x + 1.338] on the linear range between 0.03 and 1 mg/mL. Further, a biofouling experiment with fructose and galactose did not increase the capacitance, indicating the specific glucose detection. This Si-Al-modified capacitance sensor detects a lower level of glucose presence and helps in monitoring gestational diabetes.
    Matched MeSH terms: Biofouling
  2. Aljumaily MM, Alsaadi MA, Binti Hashim NA, Mjalli FS, Alsalhy QF, Khan AL, et al.
    Biotechnol Prog, 2020 05;36(3):e2963.
    PMID: 31943942 DOI: 10.1002/btpr.2963
    To overcome the biofouling challenge which faces membrane water treatment processed, the novel superhydrophobic carbon nanomaterials impregnated on/powder activated carbon (CNMs/PAC) was utilized to successfully design prepare an antimicrobial membrane. The research was conducted following a systematic statistical design of experiments technique considering various parameters of composite membrane fabrication. The impact of these parameters of composite membrane on Staphylococcus aureus growth was investigated. The bacteria growth was analyzed through spectrophotometer and SEM. The effect of CNMs' hydrophobicity on the bacterial colonies revealed a decrease in the abundance of bacterial colonies and an alteration in structure with increasing the hydrophobicity. The results revealed that the optimum preparative conditions for carbon loading CNMs/PAC was 363.04 mg with a polymer concentration of 22.64 g/100 g, and a casting knife thickness of 133.91 μm. These conditions have resulted in decreasing the number of bacteria colonies to about 7.56 CFU. Our results provided a strong evidence on the antibacterial effect and consequently on the antibiofouling potential of CNMs/PAC in membrane.
    Matched MeSH terms: Biofouling
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links