Displaying publications 21 - 31 of 31 in total

Abstract:
Sort:
  1. Sasongko TH, Kademane K, Chai Soon Hou S, Jocelyn TXY, Zabidi-Hussin Z
    Cochrane Database Syst Rev, 2023 Jul 11;7(7):CD011272.
    PMID: 37432030 DOI: 10.1002/14651858.CD011272.pub3
    BACKGROUND: Potential benefits of rapamycin or rapalogs for treating people with tuberous sclerosis complex (TSC) have been shown. Currently everolimus (a rapalog) is only approved for TSC-associated renal angiomyolipoma and subependymal giant cell astrocytoma (SEGA), but not other manifestations of TSC. A systematic review needs to establish evidence for rapamycin or rapalogs for various manifestations in TSC. This is an updated review.

    OBJECTIVES: To determine the effectiveness of rapamycin or rapalogs in people with TSC for decreasing tumour size and other manifestations and to assess the safety of rapamycin or rapalogs in relation to their adverse effects.

    SEARCH METHODS: We identified relevant studies from the Cochrane-Central-Register-of-Controlled-Trials (CENTRAL), Ovid MEDLINE and ongoing trials registries with no language restrictions. We searched conference proceedings and abstract books of conferences. Date of the last searches: 15 July 2022.

    SELECTION CRITERIA: Randomised controlled trials (RCTs) or quasi-RCTs of rapamycin or rapalogs in people with TSC.

    DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data and assessed the risk of bias of each study; a third review author verified the extracted data and risk of bias decisions. We assessed the certainty of the evidence using GRADE.

    MAIN RESULTS: The current update added seven RCTs, bringing the total number to 10 RCTs (with 1008 participants aged 3 months to 65 years; 484 males). All TSC diagnoses were by consensus criteria as a minimum. In parallel studies, 645 participants received active interventions and 340 placebo. Evidence is low-to-high certainty and study quality is mixed; mostly a low risk of bias across domains, but one study had a high risk of performance bias (lack of blinding) and three studies had a high risk of attrition bias. Manufacturers of the investigational products supported eight studies. Systemic administration Six studies (703 participants) administered everolimus (rapalog) orally. More participants in the intervention arm reduced renal angiomyolipoma size by 50% (risk ratio (RR) 24.69, 95% confidence interval (CI) 3.51 to 173.41; P = 0.001; 2 studies, 162 participants, high-certainty evidence). In the intervention arm, more participants in the intervention arm reduced SEGA tumour size by 50% (RR 27.85, 95% CI 1.74 to 444.82; P = 0.02; 1 study; 117 participants; moderate-certainty evidence) ,and reported more skin responses (RR 5.78, 95% CI 2.30 to 14.52; P = 0.0002; 2 studies; 224 participants; high-certainty evidence). In one 18-week study (366 participants), the intervention led to 25% fewer seizures (RR 1.63, 95% CI 1.27 to 2.09; P = 0.0001) or 50% fewer seizures (RR 2.28, 95% CI 1.44 to 3.60; P = 0.0004); but there was no difference in numbers being seizure-free (RR 5.30, 95% CI 0.69 to 40.57; P = 0.11) (moderate-certainty evidence). One study (42 participants) showed no difference in neurocognitive, neuropsychiatry, behavioural, sensory and motor development (low-certainty evidence). Total adverse events (AEs) did not differ between groups (RR 1.09, 95% CI 0.97 to 1.22; P = 0.16; 5 studies; 680 participants; high-certainty evidence). However, the intervention group experienced more AEs resulting in withdrawal, interruption of treatment, or reduced dose (RR 2.61, 95% CI 1.58 to 4.33; P = 0.0002; 4 studies; 633 participants; high-certainty evidence and also reported more severe AEs (RR 2.35, 95% CI 0.99 to 5.58; P = 0.05; 2 studies; 413 participants; high-certainty evidence). Topical (skin) administration Four studies (305 participants) administered rapamycin topically. More participants in the intervention arm showed a response to skin lesions (RR 2.72, 95% CI 1.76 to 4.18; P < 0.00001; 2 studies; 187 participants; high-certainty evidence) and more participants in the placebo arm reported a deterioration of skin lesions (RR 0.27, 95% CI 0.15 to 0.49; 1 study; 164 participants; high-certainty evidence). More participants in the intervention arm responded to facial angiofibroma at one to three months (RR 28.74, 95% CI 1.78 to 463.19; P = 0.02) and three to six months (RR 39.39, 95% CI 2.48 to 626.00; P = 0.009; low-certainty evidence). Similar results were noted for cephalic plaques at one to three months (RR 10.93, 95% CI 0.64 to 186.08; P = 0.10) and three to six months (RR 7.38, 95% CI 1.01 to 53.83; P = 0.05; low-certainty evidence). More participants on placebo showed a deterioration of skin lesions (RR 0.27, 95% CI 0.15 to 0.49; P < 0.0001; 1 study; 164 participants; moderate-certainty evidence). The intervention arm reported a higher general improvement score (MD -1.01, 95% CI -1.68 to -0.34; P < 0.0001), but no difference specifically in the adult subgroup (MD -0.75, 95% CI -1.58 to 0.08; P = 0.08; 1 study; 36 participants; moderate-certainty evidence). Participants in the intervention arm reported higher satisfaction than with placebo (MD -0.92, 95% CI -1.79 to -0.05; P = 0.04; 1 study; 36 participants; low-certainty evidence), although again with no difference among adults (MD -0.25, 95% CI -1.52 to 1.02; P = 0.70; 1 study; 18 participants; low-certainty evidence). Groups did not differ in change in quality of life at six months (MD 0.30, 95% CI -1.01 to 1.61; P = 0.65; 1 study; 62 participants; low-certainty evidence). Treatment led to a higher risk of any AE compared to placebo (RR 1.72, 95% CI 1.10, 2.67; P = 0.02; 3 studies; 277 participants; moderate-certainty evidence); but no difference between groups in severe AEs (RR 0.78, 95% CI 0.19 to 3.15; P = 0.73; 1 study; 179 participants; moderate-certainty evidence).

    AUTHORS' CONCLUSIONS: Oral everolimus reduces the size of SEGA and renal angiomyolipoma by 50%, reduces seizure frequency by 25% and 50% and implements beneficial effects on skin lesions with no difference in the total number of AEs compared to placebo; however, more participants in the treatment group required a dose reduction, interruption or withdrawal and marginally more experienced serious AEs compared to placebo. Topical rapamycin increases the response to skin lesions and facial angiofibroma, an improvement score, satisfaction and the risk of any AE, but not severe adverse events. With caution regarding the risk of severe AEs, this review supports oral everolimus for renal angiomyolipoma, SEGA, seizure, and skin lesions, and topical rapamycin for facial angiofibroma.

  2. Sasongko TH, Othman NH, Hussain NHN, Lee YY, Abdullah S, Husin A, et al.
    Malays J Med Sci, 2017 Aug;24(4):1-4.
    PMID: 28951684 DOI: 10.21315/mjms2017.24.4.1
    The use of placebo-controlled trials in situations where established therapies are available is considered ethically problematic since the patients randomised to the placebo group are deprived of the beneficial treatment. The pharmaceutical industry and drug regulators seem to argue that placebo-controlled trials with extensive precautions and control measures in place should still be allowed since they provide necessary scientific evidence for the efficacy and safety of new drugs. On the other hand, the scientific value and usefulness for clinical decision-making may be much higher if the new drug is compared directly to existing therapies. As such, it may still be unethical to impose the burden and risk of placebo-controlled trials on patients even if extensive precautions are taken. A few exceptions do exist. The use of placebo-controlled trials in situations where an established, effective and safe therapy exists remains largely controversial.
  3. Rani AQ, Sasongko TH, Sulong S, Bunyan D, Salmi AR, Zilfalil BA, et al.
    J. Neurogenet., 2013 Jun;27(1-2):11-5.
    PMID: 23438214 DOI: 10.3109/01677063.2012.762580
    We undertook the clinical feature examination and dystrophin analysis using multiplex ligation-dependent probe amplification (MLPA) and direct DNA sequencing of selected exons in a cohort of 35 Malaysian Duchenne/Becker muscular dystrophy (DMD/BMD) patients. We found 27 patients with deletions of one or more exons, 2 patients with one exon duplication, 2 patients with nucleotide deletion, and 4 patients with nonsense mutations (including 1 patient with two nonsense mutations in the same exon). Although most cases showed compliance to the reading frame rule, we found two unrelated DMD patients with an in-frame deletion of the gene. Two novel mutations have been detected in the Dystrophin gene and our results were compatible with other studies where the majority of the mutations (62.8%) are located in the distal hotspot. However, the frequency of the mutations in our patient varied as compared with those found in other populations.
  4. Zakaria WNA, Sasongko TH, Al-Rahbi B, Al-Sowayan N, Ahmad AH, Zakaria R, et al.
    Psychiatr Genet, 2023 Apr 01;33(2):37-49.
    PMID: 36825838 DOI: 10.1097/YPG.0000000000000336
    This study aimed to perform a bibliometric analysis on genetic studies in schizophrenia in the pregenome-wide association studies (GWAS) and post-GWAS era. We searched the literature on genes and schizophrenia using the Scopus database. The documents increased with time, especially after the human genome project and International HapMap Project, with the highest citation in 2008. The top occurrence author keywords were discovered to be different in the pre-GWAS and post-GWAS eras, reflecting the progress of genetic studies connected to schizophrenia. Emerging keywords highlighted a trend towards an application of precision medicine, showing an interplay of environmental exposures as well as genetic factors in schizophrenia pathogenesis, progression, and response to therapy. In conclusion, the gene and schizophrenia literature has grown rapidly after the human genome project, and the temporal variation in the author keywords pattern reflects the trend of genetic studies related to schizophrenia in the pre-GWAS and post-GWAS era.
  5. Mohseni J, Boon Hock C, Abdul Razak C, Othman SN, Hayati F, Peitee WO, et al.
    Gene, 2014 Jan 1;533(1):240-5.
    PMID: 24103480 DOI: 10.1016/j.gene.2013.09.081
    Hyperargininemia is a very rare progressive neurometabolic disorder caused by deficiency of hepatic cytosolic arginase I, resulting from mutations in the ARG1 gene. Until now, some mutations were reported worldwide and none of them were of Southeast Asian origins. Furthermore, most reported mutations were point mutations and a few others deletions or insertions.
  6. Rani AQ, Malueka RG, Sasongko TH, Awano H, Lee T, Yagi M, et al.
    Mol Genet Metab, 2011 Jul;103(3):303-4.
    PMID: 21514860 DOI: 10.1016/j.ymgme.2011.04.002
    In Duchenne muscular dystrophy (DMD), identification of one nonsense mutation in the DMD gene has been considered an endpoint of genetic diagnosis. Here, we identified two closely spaced nonsense mutations in the DMD gene. In a Malaysian DMD patient two nonsense mutations (p.234S>X and p.249Q>X, respectively) were identified within exon 8. The proband's mother carried both mutations on one allele. Multiple mutations may explain the occasional discrepancies between genotype and phenotype in dystrophinopathy.
  7. Sasongko TH, Gunadi, Yusoff S, Atif AB, Fatemeh H, Rani A, et al.
    Brain Dev, 2010 May;32(5):385-9.
    PMID: 19664890 DOI: 10.1016/j.braindev.2009.06.008
    The majority of spinal muscular atrophy (SMA) patients showed homozygous deletion or other mutations of SMN1. However, the genetic etiology of a significant number of SMA patients has not been clarified. Recently, mutation in the gene underlying cat SMA, limb expression 1 (LIX1), has been reported. Similarity in clinical and pathological features of cat and human SMA may give an insight into possible similarity of the genetic etiology.
  8. Watihayati MS, Fatemeh H, Marini M, Atif AB, Zahiruddin WM, Sasongko TH, et al.
    Brain Dev, 2009 Jan;31(1):42-5.
    PMID: 18842367 DOI: 10.1016/j.braindev.2008.08.012
    Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by mutations in the SMN1 gene. The SMN2 gene is highly homologous to SMN1 and has been reported to be correlated with severity of the disease. The clinical presentation of SMA varies from severe to mild, with three clinical subtypes (type I, type II, and type III) that are assigned according to age of onset and severity of the disease. Here, we aim to investigate the potential association between the number of copies of SMN2 and the deletion in the NAIP gene with the clinical severity of SMA in patients of Malaysian origin. Forty-two SMA patients (14 of type I, 20 type II, and 8 type III) carrying deletions of the SMN1 gene were enrolled in this study. SMN2 copy number was determined by fluorescence-based quantitative polymerase chain reaction assay. Twenty-nine percent of type I patients carried one copy of SMN2, while the remaining 71% carried two copies. Among the type II and type III SMA patients, 29% of cases carried two copies of the gene, while 71% carried three or four copies of SMN2. Deletion analysis of NAIP showed that 50% of type I SMA patients had a homozygous deletion of exon 5 of this gene and that only 10% of type II SMA cases carried a homozygous deletion, while all type III patients carried intact copies of the NAIP gene. We conclude that there exists a close relationship between SMN2 copy number and SMA disease severity, suggesting that the determination of SMN2 copy number may be a good predictor of SMA disease type. Furthermore, NAIP gene deletion was found to be associated with SMA severity. In conclusion, combining the analysis of deletion of NAIP with the assessment of SMN2 copy number increases the value of this tool in predicting the severity of SMA.
  9. Ismail NF, Nik Abdul Malik NM, Mohseni J, Rani AM, Hayati F, Salmi AR, et al.
    Jpn J Clin Oncol, 2014 May;44(5):506-11.
    PMID: 24683199 DOI: 10.1093/jjco/hyu024
    Tuberous sclerosis complex is an autosomal dominant neurocutaneous disorder affecting multiple organs. Tuberous sclerosis complex is caused by mutation in either one of the two disease-causing genes, TSC1 or TSC2, encoding for hamartin and tuberin, respectively. TSC2/PKD1 contiguous gene deletion syndrome is a very rare condition due to deletion involving both TSC2 and PKD1 genes. Tuberous sclerosis complex cannot be easily diagnosed since there is no pathognomonic feature, although there are consensus diagnostic criteria for that. Mutation analysis is useful and plays important roles. We report here two novel gross deletions of TSC2 gene in Malay patients with tuberous sclerosis complex and TSC2/PKD1 contiguous gene deletion syndrome, respectively.
  10. Ismail NF, Rani AQ, Nik Abdul Malik NM, Boon Hock C, Mohd Azlan SN, Abdul Razak S, et al.
    J Mol Diagn, 2017 03;19(2):265-276.
    PMID: 28087349 DOI: 10.1016/j.jmoldx.2016.10.009
    Tuberous sclerosis complex (TSC) is an autosomal dominant neurocutaneous disorder characterized by tumor growth in multiple organs and caused by mutations in either TSC1 or TSC2 genes. Because of their relatively large genomic sizes, absence of hotspots, and common type of mutations, mutation detection in TSC1 and TSC2 genes has been challenging. We devised a combination of multiple ligation-dependent probe amplification (MLPA) and amplicon sequencing (AS) to simplify the detection strategy, yet we come up with reasonably high detection rate. Thirty-four Malaysian patients diagnosed with TSC were referred to Human Genome Center, Universiti Sains Malaysia. We used a combination of MLPA to detect large copy number changes and AS to detect smaller mutations. TSC1 pathogenic or likely pathogenic mutations were found in 6 patients (18%) and TSC2 in 21 patients (62%), whereas 6 patients (18%) show no mutations and 1 patient (2%) showed only TSC2 missense variant with uncertain significance. Six of the mutations are novel. Our detection strategy costs 81% less and require 1 working week less than the conventional strategy. Confirmatory sequencing using Sanger method on a few representative mutations showed agreement with results of the AS. Combination of MLPA and Illumina MiSeq AS provides a simplified strategy and reasonably high detection rate for TSC1/TSC2 mutation, which suggested application of the strategies into clinical molecular diagnostics.
  11. Arguni E, Dewi FST, Fachiroh J, Paramita DK, Lestari SK, Wiratama BS, et al.
    PLoS One, 2022;17(8):e0272690.
    PMID: 35972930 DOI: 10.1371/journal.pone.0272690
    The long-term antibody response to the novel SARS-CoV-2 in infected patients and their residential neighborhood remains unknown in Indonesia. This information will provide insights into the antibody kinetics over a relatively long period as well as transmission risk factors in the community. We aim to prospectively observe and determine the kinetics of the anti-SARS-CoV-2 antibody for 2 years after infection in relation to disease severity and to determine the risk and protective factors of SARS CoV-2 infections in the community. A cohort of RT-PCR confirmed SARS-CoV-2 patients (case) will be prospectively followed for 2 years and will be compared to a control population. The control group comprises SARS-CoV-2 non-infected people who live within a one-kilometer radius from the corresponding case (location matching). This study will recruit at least 165 patients and 495 controls. Demographics, community variables, behavioral characteristics, and relevant clinical data will be collected. Serum samples taken at various time points will be tested for IgM anti-Spike protein of SARS-CoV-2 and IgG anti-Spike RBD of SARS-CoV-2 by using Chemiluminescent Microparticle Immunoassay (CMIA) method. The Kaplan-Meier method will be used to calculate cumulative seroconversion rates, and their association with disease severity will be estimated by logistic regression. The risk and protective factors associated with the SARS-CoV-2 infection will be determined using conditional (matched) logistic regression and presented as an odds ratio and 95% confidence interval.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links