Displaying publications 21 - 35 of 35 in total

Abstract:
Sort:
  1. Rozaila ZS, Khandaker MU, Abdul Sani SF, Sabtu SN, Amin YM, Maah MJ, et al.
    J Radiol Prot, 2017 Sep 25;37(3):761-779.
    PMID: 28581438 DOI: 10.1088/1361-6498/aa770e
    The sensitivity of a novel silica-based fibre-form thermoluminescence dosimeter was tested off-site of a rare-earths processing plant, investigating the potential for obtaining baseline measurements of naturally occurring radioactive materials. The dosimeter, a Ge-doped collapsed photonic crystal fibre (PCFc) co-doped with B, was calibrated against commercially available thermoluminescent dosimetry (TLD) (TLD-200 and TLD-100) using a bremsstrahlung (tube-based) x-ray source. Eight sampling sites within 1 to 20 km of the perimeter of the rare-earth facility were identified, the TLDs (silica- as well as TLD-200 and TLD-100) in each case being buried within the soil at fixed depth, allowing measurements to be obtained, in this case for protracted periods of exposure of between two to eight months. The values of the dose were then compared against values projected on the basis of radioactivity measurements of the associated soils, obtained via high-purity germanium gamma-ray spectrometry. Accord was found in relative terms between the TL evaluations at each site and the associated spectroscopic results. Thus said, in absolute terms, the TL evaluated doses were typically less than those derived from gamma-ray spectroscopy, by ∼50% in the case of PCFc-Ge. Gamma spectrometry analysis typically provided an upper limit to the projected dose, and the Marinelli beaker contents were formed from sieving to provide a homogenous well-packed medium. However, with the radioactivity per unit mass typically greater for smaller particles, with preferential adsorption on the surface and the surface area per unit volume increasing with decrease in radius, this made for an elevated dose estimate. Prevailing concentrations of key naturally occurring radionuclides in soil,226Ra,232Th and40K, were also determined, together with radiological dose evaluation. To date, the area under investigation, although including a rare-earth processing facility, gives no cause for concern from radiological impact. The current study reveals the suitability of the optical fibre based micro-dosimeter for all-weather monitoring of low-level environmental radioactivity.
  2. Mohd Sobri SN, Abdul Sani SF, Sabtu SN, Looi LM, Chiew SF, Pathmanathan D, et al.
    Sci Rep, 2020 02 06;10(1):1997.
    PMID: 32029810 DOI: 10.1038/s41598-020-58932-5
    At the supramolecular level, the proliferation of invasive ductal carcinoma through breast tissue is beyond the range of standard histopathology identification. Using synchrotron small angle x-ray scattering (SAXS) techniques, determining nanometer scale structural changes in breast tissue has been demonstrated to allow discrimination between different tissue types. From a total of 22 patients undergoing symptomatic investigations, different category breast tissue samples were obtained in use of surgically removed tissue, including non-lesional, benign and malignant tumour. Structural components of the tissues were examined at momentum transfer values between q = 0.2 nm-1 and 1.5 nm-1. From the SAXS patterns, axial d-spacing and diffuse scattering intensity were observed to provide the greatest discrimination between the various tissue types, specifically in regard to the epithelial mesenchymal transition (EMT) structural component in malignant tissue. In non-lesional tissue the axial period of collagen is within the range 63.6-63.7 nm (formalin fixed paraffin embedded (FFPE) dewaxed) and 63.4 (formalin fixed), being 0.9 nm smaller than in EMT cancer-invaded regions. The overall intensity of scattering from cancerous regions is a degree of magnitude greater in cancer-invaded regions. Present work has found that the d-spacing of the EMT positive breast cancer tissue (FFPE (dewaxed)) is within the range 64.5-64.7 nm corresponding to the 9th and 10th order peaks. Of particular note in regard to formalin fixation of samples is that no alteration is observed to occur in the relative differences in collagen d-spacing between non-lesional and malignant tissues. This is a matter of great importance given that preserved-sample and also retrospective study of samples is greatly facilitated by formalin fixation. Present results indicate that as aids in tissue diagnosis SAXS is capable of distinguishing areas of invasion by disease as well as delivering further information at the supramolecular level.
  3. Khandaker MU, Nawi SNM, Lam SE, Sani SFA, Islam MA, Islam MA, et al.
    Appl Radiat Isot, 2023 Jun;196:110771.
    PMID: 36933313 DOI: 10.1016/j.apradiso.2023.110771
    Thermoluminescence (TL) materials have a broad variety of uses in various fields, such as clinical research, individual dosimetry, and environmental dosimetry, amongst others. However, the use of individual neutron dosimetry has been developing more aggressively lately. In this regard, present study establishes a relationship between the neutron dosage and the optical property changes of graphite-rich materials caused by high doses of neutron radiation. This has been done with the intention of developing a novel, graphite-based radiation dosimeter. Herein, the TL yield of commercially graphite-rich materials (i.e. graphite sheet, 2B and HB grade pencils) irradiated by neutron radiation with doses ranging from 250 Gy to 1500 Gy has been investigated. The samples were bombarded with thermal neutrons as well as a negligible amount of gamma rays, from the nuclear reactor TRIGA-II installed at the Bangladesh Atomic Energy Commission. The shape of the glow curves was observed to be independent of the given dosage, with the predominant TL dosimetric peak maintained within the region of 163 °C-168 °C for each sample. By studying the glow curves of the irradiated samples, some of the most well theoretical models and techniques were used to compute the kinetic parameters such as the order of kinetics (b), activation energy (E) or trap depth, frequency factor (s) or escape probability, and trap lifetime (τ). All of the samples were found to have a good linear response over the whole dosage range, with 2B grade of polymer pencil lead graphite (PPLGs) demonstrating a higher level of sensitivity than both HB grade and graphite sheet (GS) samples. Additionally, the level of sensitivity shown by each of them is highest at the lowest dosage that was given, and it decreases as the dose increases. Importantly, the phenomenon of dose-dependent structural modifications and internal annealing of defects has been observed by assessing the area of deconvoluted micro-Raman spectra of graphite-rich materials in high-frequency areas. This trend is consistent with the cyclical pattern reported in the intensity ratio of defect and graphite modes in previously investigated carbon-rich media. Such recurrent occurrences suggest the idea of employing Raman microspectroscopy as a radiation damage study tool for carbonaceous materials. The excellent responses of the key TL properties of the 2B grade pencil demonstrate its usefulness as a passive radiation dosimeter. As a consequence, the findings suggest that graphite-rich materials have the potential to be useful as a low-cost passive radiation dosimeter, with applications in radiotherapy and manufacturing.
  4. Mohd Nor Ihsan NS, Abdul Sani SF, Looi LM, Cheah PL, Chiew SF, Pathmanathan D, et al.
    Prog Biophys Mol Biol, 2023 Sep;182:59-74.
    PMID: 37307955 DOI: 10.1016/j.pbiomolbio.2023.06.002
    Amyloidosis is a deleterious condition caused by abnormal amyloid fibril build-up in living tissues. To date, 42 proteins that are linked to amyloid fibrils have been discovered. Amyloid fibril structure variation can affect the severity, progression rate, or clinical symptoms of amyloidosis. Since amyloid fibril build-up is the primary pathological basis for various neurodegenerative illnesses, characterization of these deadly proteins, particularly utilising optical techniques have been a focus. Spectroscopy techniques provide significant non-invasive platforms for the investigation of the structure and conformation of amyloid fibrils, offering a wide spectrum of analyses ranging from nanometric to micrometric size scales. Even though this area of study has been intensively explored, there still remain aspects of amyloid fibrillization that are not fully known, a matter hindering progress in treating and curing amyloidosis. This review aims to provide recent updates and comprehensive information on optical techniques for metabolic and proteomic characterization of β-pleated amyloid fibrils found in human tissue with thorough literature analysis of publications. Raman spectroscopy and SAXS are well established experimental methods for study of structural properties of biomaterials. With suitable models, they offer extended information for valid proteomic analysis under physiologically relevant conditions. This review points to evidence that despite limitations, these techniques are able to provide for the necessary output and proteomics indication in order to extrapolate the aetiology of amyloid fibrils for reliable diagnostic purposes. Our metabolic database may also contribute to elucidating the nature and function of the amyloid proteome in development and clearance of amyloid diseases.
  5. Syed Najmuddin SUF, Kamarudin AA, Abdul Sani S, Norrrahim MNF, Abdul Latif N', Wah LGP
    Cell Mol Biol (Noisy-le-grand), 2023 Jul 31;69(7):7-18.
    PMID: 37715444 DOI: 10.14715/cmb/2023.69.7.2
    The central dogma of molecular biology was no longer "central" after ground-breaking discoveries conveyed gene expression involves more complex physiological functions in cancer pathogenesis over the last decade. MicroRNAs (miRNAs) are short non-coding RNA that regulate gene expression, affecting key molecular pathways involved in sustaining the proliferative signalling for tumour development, evasion of cellular death, invasion, angiogenesis, as well as metastasis in a plethora of cancer types. MiRNA expression is dysregulated in human cancer through a number of processes, including miRNA gene amplification or deletion, faulty miRNA transcriptional regulation, dysregulated epigenetic alterations, and flaws in the miRNA biogenesis machinery. As a result, the current progress of treatment intervention focuses on modifying the miRNA levels in cancer therapeutics. Nevertheless, the mode of delivery and current management of miRNA therapies remains one of the many questions that need to be addressed. Here, we provided a comprehensive mini-review outlining the role of miRNA in cancer as well as its mode of delivery which includes liposomes, viral vectors, inorganic material-based nanoparticles, and cell-derived membrane vesicles. Likewise, the regulation of miRNA in other diseases and their challenges in translational research was also thoroughly discussed.
  6. Mohd Nor Ihsan NS, Abdul Sani SF, Looi LM, Pathmanathan D, Cheah PL, Chiew SF, et al.
    PMID: 38113556 DOI: 10.1016/j.saa.2023.123743
    Trace and minor elements play crucial roles in a variety of biological processes, including amyloid fibrils formation. Mechanisms include activation or inhibition of enzymatic reactions, competition between elements and metal proteins for binding positions, also changes to the permeability of cellular membranes. These may influence carcinogenic processes, with trace and minor element concentrations in normal and amyloid tissues potentially aiding in cancer diagnosis and etiology. With the analytical capability of the spectroscopic technique X-ray fluorescence (XRF), this can be used to detect and quantify the presence of elements in amyloid characterization, two of the trace elements known to be associated with amyloid fibrils. In present work, involving samples from a total of 22 subjects, samples of normal and amyloid-containing tissues of heart, kidney, thyroid, and other tissue organs were obtained, analyzed via energy-dispersive X-ray fluorescence (EDXRF). The elemental distribution of potassium (K), calcium (Ca), arsenic (As), and iron (Fe) was examined in both normal and amyloidogenic tissues using perpetual thin slices. In amyloidogenic tissues the levels of K, Ca, and Fe were found to be less than in corresponding normal tissues. Moreover, the presence of As was only observed in amyloidogenic samples; in a few cases in which there was an absence of As, amyloid samples were found to contain Fe. Analysis of arsenic in amyloid plaques has previously been difficult, often producing contradictory results. Using the present EDXRF facility we could distinguish between amyloidogenic and normal samples, with potential correlations in respect of the presence or concentration of specific elements.
  7. Mat Nawi SN, Abdul Sani SF, Khandaker MU, Ung NM, Almugren KS, Alkallas FH, et al.
    PLoS One, 2020;15(7):e0235053.
    PMID: 32673337 DOI: 10.1371/journal.pone.0235053
    Study has been made of the thermoluminescence yield of various novel tailor-made silica fibres, 6 and 8 mol % Ge-doped, with four differing outer dimensions, comprised of flat and cylindrical shapes, subjected to electron irradiation. Main thermoluminescence dosimetric characteristics have been investigated, including the glow curve, dose response, energy dependence, minimum detectable dose, effective atomic number, linearity of index and sensitivity of the fibres. The studies have also established the uncertainties involved as well as the stability of response in terms of fading effect, reproducibility and annealing. In addition, dose-rate dependence was accounted for as this has the potential to be a significant factor in radiotherapy applications. The 6 and 8 mol % fibres have been found to provide highly linear dose response within the range 1 to 4 Gy, the smallest size flat fibre, 6 mol% Ge-doped, showing the greatest response by a factor of 1.1 with respect to the highly popular LiF phosphor-based medium TLD100. All of the fibres also showed excellent reproducibility with a standard deviation of < 2% and < 4% for 6 and 8 mol % Ge-doped fibres respectively. For fading evaluation, the smallest 6 mol% Ge-doped dimension flat fibre, i.e., 85 × 270 μm displayed the lowest signal loss within 120 days post-irradiation, at around 26.9% also showing a response superior to that of all of the other fibres. Moreover, all the fibres and TLD-100 chips showed independence with respect to electron irradiation energy and dose-rate. Compared with the 8 mol% Ge-doped optical fibres, the 6 mol% Ge-doped flat optical fibres have been demonstrated to possess more desirable performance features for passive dosimetry, serving as a suitable alternative to TLD-100 for medical irradiation treatment applications.
  8. Ihsan NSMN, Abdul Sani SF, Looi LM, Pathmanathan D, Cheah PL, Chiew SF, et al.
    Biophys Chem, 2025 Jan;316:107349.
    PMID: 39546937 DOI: 10.1016/j.bpc.2024.107349
    Amyloid diseases are characterized by the accumulation of misfolded protein aggregates in human tissues, pose significant challenges for both diagnosis and treatment. Protein aggregations known as amyloids are linked to several neurodegenerative conditions including Alzheimer's disease, Parkinson's disease, and systemic amyloidosis. The key goal of this research is to employ Small-Angle X-ray Scattering (SAXS) to examine the supramolecular structures of amyloid aggregates in human tissues. We present the structural analysis of amyloid using SAXS, which is employed directly to analyze thin tissue samples without damaging the tissues. This technique provides size and shape information of fibrils, which can be used to generate low-resolution 2D models. The present study investigates the structural changes in amyloid fibril axial d-spacing and scattering intensity in different human tissues, including kidney, heart, thyroid, and others, while also accounting for the presence of triglycerides in these tissues. Tissue structural components were examined at momentum transfer values between q = 0.2 nm-1 and 1.5 nm-1. The d-spacing is a critical parameter in SAXS that provides information about the periodic distances between structures within a sample. From the supramolecular SAXS patterns, the axial d-spacing of fibrils in amyloid tissues is prominent and exists within the 3rd to 10th order, compared to that of healthy tissues which do not have notable peak orders. The axial period of fibrils in amyloid tissues is within the scattering vector range 57.40-64.64 nm-1 while in normal tissues the range is between 60.68 and 61.41 nm-1, which is 3.0 nm-1 smaller than amyloid-containing tissues. Differences in d-spacing are often correlate with distinct pathological mechanisms or stages of disease progression. The application of SAXS to investigate amyloid structures in human tissues has enormous potential to further knowledge of amyloid disorders. This work will open the path for novel diagnostic instruments and therapeutic strategies meant to reduce the burden of amyloid-related diseases by offering a thorough structural examination of amyloid aggregates.
  9. Bradley DA, Jafari SM, Siti Shafiqah AS, Tamcheck N, Shutt A, Siti Rozaila Z, et al.
    Appl Radiat Isot, 2016 Nov;117:128-134.
    PMID: 26778762 DOI: 10.1016/j.apradiso.2015.12.034
    Using irradiated doped-silica preforms from which fibres for thermoluminescence dosimetry applications can be fabricated we have carried out a range of luminescence studies, the TL yield of the fibre systems offering many advantages over conventional passive dosimetry types. In this paper we investigate such media, showing emission spectra for irradiated preforms and the TL response of glass beads following irradiation to an 241Am-Be neutron source located in a tank of water, the glass fibres and beads offering the advantage of being able to be placed directly into liquid. The outcomes from these and other lines of research are intended to inform development of doped silica radiation dosimeters of versatile utility, extending from environmental evaluations through to clinical and industrial applications.
  10. Wahib NB, Abdul Sani SF, Ramli A, Ismail SS, Abdul Jabar MH, Khandaker MU, et al.
    Radiat Environ Biophys, 2020 08;59(3):523-537.
    PMID: 32462382 DOI: 10.1007/s00411-020-00846-x
    Accidents resulting in widespread dispersal of radioactive materials have given rise to a need for materials that are convenient in allowing individual dose assessment. The present study examines natural Dead Sea salt adopted as a model thermoluminescence dosimetry system. Samples were prepared in two different forms, loose-raw and loose-ground, subsequently exposed to 60Co gamma-rays, delivering doses in the range 2-10 Gy. Key thermoluminescence (TL) properties were examined, including glow curves, dose response, sensitivity, reproducibility and fading. Glow curves shapes were found to be independent of given dose, prominent TL peaks for the raw and ground samples appearing in the temperature ranges 361-385 ºC and 366-401 ºC, respectively. The deconvolution of glow curves has been undertaken using GlowFit, resulting in ten overlapping first-order kinetic glow peaks. For both sample forms, the integrated TL yield displays linearity of response with dose, the loose-raw salt showing some 2.5 × the sensitivity of the ground salt. The samples showed similar degrees of fading, with respective residual signals 28 days post-irradiation of 66% and 62% for the ground and raw forms respectively; conversely, confronted by light-induced fading the respective signal losses were 62% and 80%. The effective atomic number of the Dead Sea salt of 16.3 is comparable to that of TLD-200 (Zeff 16.3), suitable as an environmental radiation monitor in accident situations but requiring careful calibration in the reconstruction of soft tissue dose (soft tissue Zeff 7.2). Sample luminescence studies were carried out via Raman and Photoluminescence spectroscopy as well as X-ray diffraction, ionizing radiation dependent variation in lattice structure being found to influence TL response.
  11. Jabbarzadeh Kaboli P, Afzalipour Khoshkbejari M, Mohammadi M, Abiri A, Mokhtarian R, Vazifemand R, et al.
    Biomed Pharmacother, 2020 Jan;121:109635.
    PMID: 31739165 DOI: 10.1016/j.biopha.2019.109635
    Breast cancer is the most common type of cancer among women. Therefore, discovery of new and effective drugs with fewer side effects is necessary to treat it. Sulforaphane (SFN) is an organosulfur compound obtained from cruciferous plants, such as broccoli and mustard, and it has the potential to treat breast cancer. Hence, it is vital to find out how SFN targets certain genes and cellular pathways in treating breast cancer. In this review, molecular targets and cellular pathways of SFN are described. Studies have shown SFN inhibits cell proliferation, causes apoptosis, stops cell cycle and has anti-oxidant activities. Increasing reactive oxygen species (ROS) produces oxidative stress, activates inflammatory transcription factors, and these result in inflammation leading to cancer. Increasing anti-oxidant potential of cells and discovering new targets to reduce ROS creation reduces oxidative stress and it eventually reduces cancer risks. In short, SFN effectively affects histone deacetylases involved in chromatin remodeling, gene expression, and Nrf2 anti-oxidant signaling. This review points to the potential of SFN to treat breast cancer as well as the importance of other new cruciferous compounds, derived from and isolated from mustard, to target Keap1 and Akt, two key regulators of cellular homeostasis.
  12. Yeu TH, Omar IS, Sani SFA, Pathmanathan D, Goh BT, Ravindran N, et al.
    Appl Spectrosc, 2023 Jul;77(7):723-733.
    PMID: 37357678 DOI: 10.1177/00037028231182721
    Obesity is strongly linked with increased risk and poorer prognosis of endometrial cancer (EC). Cancer-associated fibroblasts (CAFs) are activated fibroblasts that form a large component of the tumor microenvironment and undergo metabolic reprogramming to provide critical metabolites for tumor growth. However, it is still unknown how obesity, characterized by a surplus of free fatty acids drives the modifications of CAFs lipid metabolism which may provide the mechanistic link between obesity and EC progression. The present study aims to evaluate the utility of Raman spectroscopy, an emerging nondestructive analytical tool to detect signature changes in lipid metabolites of CAFs from EC patients with varying body mass index. We established primary cultures of fibroblasts from human EC tissues, and CAFs of overweight/obese and nonobese women using antibody-conjugated magnetic beads isolation. These homogeneous fibroblast cultures expressed fibroblast markers, including α-smooth muscle actin and vimentin. Analysis was made in the Raman spectra region best associated with cancer progression biochemical changes in lipids (600-1800 cm-1 and 2800-3200 cm-1). Direct band analysis and ratiometric analysis were conducted to extract information from the Raman spectrum. Present results demonstrated minor shifts in the CH2 symmetric stretch of lipids at 2879 cm-1 and CH3 asymmetric stretching from protein at 2932 cm-1 in the overweight/obese CAFS compared to nonobese CAFs, indicating increased lipid content and a higher degree of lipid saturation. Principal component analysis showed that CAFs from overweight/obese and nonobese EC patients can be clearly distinguished indicating the capability of Raman spectroscopy to detect changes in biochemical components. Our results suggest Raman spectroscopy supported by chemometric analysis is a reliable technique for characterizing metabolic changes in clinical samples, providing an insight into obesity-driven alteration in CAFs, a critical stromal component during EC tumorigenesis.
  13. Suan NAM, Soelar SA, Rani RA, Anuar NA, Aziz KAA, Chan HK, et al.
    Med J Malaysia, 2024 Mar;79(2):222-233.
    PMID: 38553930
    INTRODUCTION: Equitable healthcare delivery is essential and requires resources to be distributed, which include assets and healthcare workers. To date, there is no gold standard for measuring the correct number of physicians to meet healthcare needs. This rapid review aims to explore measurement tools employed to optimise the distribution of hospital physicians, with a focus on ensuring fair resource allocation for equitable healthcare delivery.

    MATERIALS AND METHODS: A literature search was performed across PubMed, EMBASE, Emerald Insight and grey literature sources. The key terms used in the search include 'distribution', 'method', and 'physician', focusing on research articles published in English from 2002 to 2022 that described methods or tools to measure hospital-based physicians' distribution. Relevant articles were selected through a two-level screening process and critically appraised. The primary outcome is the measurement tools used to assess the distribution of hospital-based physicians. Study characteristics, tool advantages and limitations were also extracted. The extracted data were synthesised narratively.

    RESULTS: Out of 7,199 identified articles, 13 met the inclusion criteria. Among the selected articles, 12 were from Asia and one from Africa. The review identified eight measurement tools: Gini coefficients and Lorenz curve, Robin Hood index, Theil index, concentration index, Workload Indicator of Staffing Need method, spatial autocorrelation analysis, mixed integer linear programming model and cohortcomponent model. These tools rely on fundamental data concerning population and physician numbers to generate outputs. Additionally, five studies employed a combination of these tools to gain a comprehensive understanding of physician distribution dynamics.

    CONCLUSION: Measurement tools can be used to assess physician distribution according to population needs. Nevertheless, each tool has its own merits and limitations, underscoring the importance of employing a combination of tools. The choice of measuring tool should be tailored to the specific context and research objectives.

  14. Khandaker MU, Mokhrizal NFB, Shuaibu HK, Sani SFA, Alzimami K, Bradley DA, et al.
    Appl Radiat Isot, 2024 Oct;212:111474.
    PMID: 39146808 DOI: 10.1016/j.apradiso.2024.111474
    One of the most well-liked energizing drinks is now tea, which is primarily used in Malaysia. The natural radioactivity in the associated soils where tea plants are cultivated plays a major role in determining the presence of radionuclides in tea leaves. The present study assesses the transfer of radionuclides from soil-to-tea leaves and then estimates the committed effective doses through tea consumption. Tea leaves and the associated soils were obtained from the largest tea plantation area, which is located in the Cameron Highlands, Malaysia. The marketed tea leaves in powdered form were obtained from the supermarkets in Kuala Lumpur. HPGe gamma-ray spectrometry was used to determine the prevailing concentrations of long-lived radioactive materials in tea leaves. Activity concentrations of 226Ra, 232Th, and 40K in tea soils ranged from 49 to 101.7 Bq kg-1, 74.5-124.1 Bq kg-1 and 79.6-423.2 Bq kg-1, respectively, while the respective values in tea leaves are 14.4-23.8 Bq kg-1, 12.9-29.5 Bq kg-1 and 297-387.5 Bq kg-1. Transfer factors of radionuclides showed typical values (<1.0) except for the 40K. The threshold tea consumption rates suggest that one should not consume more than 67 g of tea leaves per day (around 4 g of tea leaves are needed for making 1 cup of tea, so 17 cups per day) to avoid negative health effects. Committed effective doses due to tea consumption are found to be lower (5.18-6.08 μSv y-1) than the United Nations Scientific Committee on the Effects of Atomic Radiation (2000) reference dose guidance limit of 290 μSv y-1 for foodstuffs; however, it should be noted that the guidance limit is recommended for all foodstuffs collectively. Providing data on natural radioactivity in tea leaves grown in Malaysia, this study may help people manage a healthy lifestyle.
  15. Muslima U, Khandaker MU, Lam SE, Mat Nawi SN, Abdul Sani SF, Ung NM, et al.
    Appl Radiat Isot, 2024 Oct;212:111457.
    PMID: 39068692 DOI: 10.1016/j.apradiso.2024.111457
    In clinical settings, standard dosimeters might miss radiation mishaps. Retrospective dosimeters could help to track personnel (such as patients and other staff who don't wear dosimeters) exceeding safe limits and assess long-term exposure trends. This study has investigated key thermoluminescence (TL) dosimetric characteristics, including the glow curve structure, dose-response, energy dependence, sensitivity and fading of various safety glasses that are used as screen protectors of smartphones subjected to photon irradiation. Among the studied glasses, the HD Anti-Peep safety glass for iPhone has been found to exhibit a linear dose-response with a regression coefficient of 99% within the dose range of 2-10 Gy. Moreover, all the safety glasses showed independence with respect to photon energy of 6 MV and 10 MV. The TL glow curves of the samples showed a broad glow peak between 125 °C and 325 °C at 10 Gy. The TL kinetic parameters of the safety glasses were also studied by analyzing the glow curves using the peak shape and initial rise method. The geometric factor (μg) is found to be within the range of 0.43-0.53, which indicates the suitability of applying Chen's general-order formula to calculate the kinetic parameters such as activation energy, frequency factor and trap lifetime. The activation energy (E) and frequency factor (s) are found in the range of 0.31-0.54 eV and 4.55 × 103 to 2.12 × 106 s-1 respectively obtained via the peak shape method. The relatively long trap lifetime and observed thermoluminescence features indicate that the HD Anti-Peep safety glass offers a better option to estimate dose retrospectively to ensure the safety of human health.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links