MATERIALS & METHODS: Data from all OT in June and mid-July 2017 were collected from recipients' cards, transfusion request forms and patient's case files, regarding discipline involved, indications, time intervals from request of blood transfusion to the completion of OT on patients, monitoring of patients and adverse reactions.
RESULTS: A total of 1285 transfusion cases were identified during the study period. 216 (16.8%) cases were OT while the 1069 (83.2%) cases were non-OT. Surgery discipline has the highest (30.1%) OT. The indications of OT were acute clinical need: 82.9%, less acute clinical need: 13.9% and no clinical need: 3.2%. A huge delay (average: 5 hours 40 minutes) in starting transfusion after grouping and crossmatching (GXM) completion was noted. Besides, 25.9% cases took <4 hours to complete OT; 83.4% cases did not have proper transfusion monitoring and three transfusion reactions were reported.
DISCUSSION: Although most of the OT cases had appropriate clinical indications, the transfusion can be commenced earlier at day time rather than overnight. Cases without absolute indication should avoid OT. The poor monitoring of patient during OT had posed risks to patients' life if an adverse transfusion reaction happened. The major reason for OTs was a huge delay in starting transfusion after the GXM completion. The contravention of 4-hour infusion rule increased the patients' risk of developing bacterial sepsis. The practice of OT should be discouraged wherever possible except for clinically indicated cases.
METHODS: PubMed and Science Direct were searched for papers published between the years 1974 and 2018. The search was restricted to articles written in English related to modification of glass ionomer cements. Only articles published in peer-reviewed journals were included. The search included literature reviews, in vitro, and in vivo studies. Articles written in other languages, without available abstracts and those related to other field were excluded. About 198 peer-review articles in the English language were reviewed.
CONCLUSION: Based on the finding, most of the modification has improved physical-mechanical properties of glass ionomer cements. Recently, researchers have attempted to improve their antimicrobial properties. However, the attempts were reported to compromise the physical-mechanical properties of modified glass ionomer cements.
CLINICAL SIGNIFICANCE: As the modification of glass ionomer cement with different material improved the physical-mechanical and antimicrobial properties, it could be used as restorative material for wider application in dentistry.
AIMS: This study aims to evaluate and compare the cytotoxicity and cell attachment properties of cGIC and nano-HA-silica-GIC on dental pulp stem cells (DPSCs).
METHODS AND MATERIALS: Material extracts of nano-HA-silica-GIC and cGIC were prepared into seven serial dilutions and applied to 96 well plates seeded with DPSCs. After 72 h, the cell viability was determined using MTT assay. The DPSCs cell attachment properties were examined under scanning electron microscope (SEM) after 24 and 72 h. Kruskal-Wallis test was used to analyse the data for MTT assay (P < 0.05). SEM images of cell attachment properties were also described.
RESULTS: Nano-HA-silica-GIC and cGIC was shown to be slight to non-cytotoxic at all concentrations, except 200 mg/ml. Moderate cytotoxicity has been observed at 200 mg/ml concentration where nano-HA-silica-GIC and cGIC revealed cell viability values of 44.38 and 42.15%, respectively. Nano-HA-silica-GIC demonstrated better cell viability values than cGIC at all concentrations except for 6.25 and 12.5 mg/ml. Nevertheless, the results were not statistically significant (P > 0.05). SEM examination revealed the increasing numbers of DPSCs attached to both groups with prominent filopodia, especially after 72 h.
CONCLUSIONS: Nano-HA-silica-GIC exhibited good biocompatibility which is comparable to cGIC and favoured the attachment of DPSCs.
OBJECTIVE: This review aimed to investigate the usage of radiosensitisers in the biomedical field, determine their important parameters, and suggest radiosensitisers with potential among the analysed radiosensitisers.
RESULTS AND CONCLUSION: This review has discussed several parameters for radiosensitisers, including median lethal dose, cell survival, tumour size, cell viability, Dose Enhancement Factor (DEF), Reactive Oxygen Species (ROS) concentration, radiosensitiser production complexity, radiosensitiser administration technique, and radiosensitiser toxicity. General trends regarding the development of radiosensitisers, including the types, effectiveness, and their production complexity, have also been discussed within this review article.