DESIGN: Saliva samples were collected after the morning meal by placing a sterile cotton swab in the vestibule of the oral cavity from cleft lip and palate patients immediately preoperative and 12 weeks postoperative. Normal children were examined as a control group. Samples were cultured; Staphylococcus and Streptococcus isolates were identified and quantified.
PATIENTS: Fifteen cleft lip and palate patients and 22 normal children, aged 3 to 39 months were examined.
RESULTS: Streptococcus mitis biovar 1, Streptococcus salivarius and Streptococcus oralis of the viridans group of streptococci were the most commonly found in normal children, as well as in cleft lip and palate children. In the cleft lip and palate group, mean streptococcal count was 32.41 (29.80) and 46.46 (42.80) in the pre- and postoperative periods, respectively; in the normal group, the count was 20.93 (27.93) and 49.92 (34.72) at 0 week and 12 weeks, respectively. Staphylococcus aureus was the most common Staphylococcus species found in CLP patients, representing 47.4% postoperatively. In the cleft lip and palate children, mean staphylococcal count was 5.34 (8.13) and 0.56 (0.92) in the pre- and postoperative periods, respectively; in normal children, the count was 0.82 (1.98) and 0.60 (2.55) at 0 and 12 weeks, respectively. The differences were statistically significant only for the staphylococcal count between pre- and postoperative periods in children with cleft lip and palate as tested by analysis of variance (p < .05).
CONCLUSIONS: Cleft lip and palate patients had more colonization by S. aureus compared with normal children, and the colony count decreased significantly following surgical repair of the cleft lip and palate.
PURPOSE: The purpose of this comprehensive review is to compile and analyze the information related to the pharmacokinetic, pharmacological, and toxicological studies reported on α- and β-asarone using preclinical in vitro and in vivo models. Besides, the molecular targets and mechanism(s) involved in the biological activities of α- and β-asarone were discussed.
METHODS: Databases including PubMed, ScienceDirect and Google scholar were searched and the literature from the year 1960 to January 2017 was retrieved using keywords such as α-asarone, β-asarone, pharmacokinetics, toxicology, pharmacological activities (e.g. depression, anxiety).
RESULTS: Based on the data obtained from the literature search, the pharmacokinetic studies of α- and β-asarone revealed that their oral bioavailability in rodents is poor with a short plasma half-life. Moreover, the metabolism of α- and β-asarone occurs mainly through cytochrome-P450 pathways. Besides, both α- and/or β-asarone possess a wide range of pharmacological activities such as antidepressant, antianxiety, anti-Alzheimer's, anti-Parkinson's, antiepileptic, anticancer, antihyperlipidemic, antithrombotic, anticholestatic and radioprotective activities through its interaction with multiple molecular targets. Importantly, the toxicological studies revealed that both α- and β-asarone can cause hepatomas and might possess mutagenicity, genotoxicity, and teratogenicity.
CONCLUSIONS: Taken together, further preclinical studies are required to confirm the pharmacological properties of α-asarone against depression, anxiety, Parkinson's disease, psychosis, drug dependence, pain, inflammation, cholestasis and thrombosis. Besides, the anticancer effect of β-asarone should be further studied in different types of cancers using in vivo models. Moreover, further dose-dependent in vivo studies are required to confirm the toxicity of α- and β-asarone. Overall, this extensive review provides a detailed information on the preclinical pharmacological and toxicological activities of α-and β-asarone and this could be very useful for researchers who wish to conduct further preclinical studies using α- and β-asarone.
Methods: Mice were immunized subcutaneously with three doses of USM.TOXO1 antigen (10 μg/ml). Following the immunization, the IgG antibody, IgG subclass, IFN-γ and IL-4 production were evaluated using ELISA, the study was conducted at Animal Research and Service Center (ARASC), USM Health Campus in 2016.
Results: Mice immunized with USM.TOXO1 significantly induced a mixed Th1/Th2 response polarized toward the IgG1 antibody isotype. While the cytokine analysis revealed a significant release of IFN-γ cytokines.
Conclusion: USM.TOXO1 is a potential vaccine candidate that elicits strong immunity in BALB/c mice. The proven immunogenicity of the generated antigen can serve as a premise for further use of epitope-based vaccine in the immunoprevention of human and animal toxoplasmosis.
RESULTS: A noticeable variation between the RDT (Alltest Biotech, China) and nPCR results was observed, for RDT 78% (46/59) were P. falciparum positive, 6.8% (4/59) were co-infected with both P. falciparum and Plasmodium vivax, 15.3% (9/59) were negative by the RDT. However, when the nPCR was applied only 44.1% (26/59) and 55.9% (33/59) was P. falciparum positive and negative respectively. The pfhrp2 was further amplified form all nPCR positive samples. Only 17 DNA samples were positive from the 26 positive P. falciparum, interestingly, variation in band sizes was observed and further confirmed by DNA sequencing, and sequencing analysis revealed a high-level of genetic diversity of the pfhrp2 gene in the parasite population from the study area. However, despite extreme sequence variation, diversity of PfHRP2 does not appear to affect RDT performance.
METHODS: An indirect enzyme-linked immunosorbent assay (ELISA) was developed to evaluate the usefulness of USM.TOXO1 antigen for the detection of IgG antibodies against Toxoplasma gondii in human sera. Whereas the reactivity of the developed antigen against IgM antibody was evaluated by western blot and Dot enzyme immunoassay (dot-EIA) analysis.
RESULTS: The diagnostic performance of the new antigens in IgG ELISA was achieved at the maximum values of 85.43% and 81.25% for diagnostic sensitivity and specificity respectively. The USM.TOXO1 was also proven to be reactive with anti- T. gondii IgM antibody.
CONCLUSIONS: This finding makes the USM.TOXO1 antigen an attractive candidate for improving the toxoplasmosis serodiagnosis and demonstrates that multiepitope antigens could be a potential and promising diagnostic marker for the development of high sensitive and accurate assays.