Displaying publications 21 - 28 of 28 in total

Abstract:
Sort:
  1. Ahmad AF, Aziz SA, Abbas Z, Obaiys SJ, Matori KA, Zaid MHM, et al.
    Polymers (Basel), 2019 Apr 11;11(4).
    PMID: 30978935 DOI: 10.3390/polym11040661
    In this study, a nanocomposite of reduced graphene oxide (RGO) nanofiller-reinforcement poly(lactic acid) (PLA)/poly(ethylene glycol) (PEG) matrix was prepared via the melt blending method. The flexibility of PLA was improved by blending the polymer with a PEG plasticizer as a second polymer. To enhance the electromagnetic interference shielding properties of the nanocomposite, different RGO wt % were combined with the PLA/PEG blend. Using Fourier-transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM) and X-ray diffraction, the structural, microstructure, and morphological properties of the polymer and the RGO/PLA/PEG nanocomposites were examined. These studies showed that the RGO addition did not considerably affect the crystallinity of the resulting nanomaterials. Thermal analysis (TGA) reveals that the addition of RGO highly improved the thermal stability of PLA/PEG nanocomposites. The dielectric properties and electromagnetic interference shielding effectiveness of the synthesized nanocomposites were calculated and showed a higher SE total value than the target value (20 dB). On the other hand, the results showed an increased power loss by increasing the frequency and conversely decreased with an increased percentage of filler.
  2. Loh ZW, Mohd Zaid MH, Matori KA, Kechik MMA, Fen YW, Mayzan MZH, et al.
    J Mech Behav Biomed Mater, 2023 Jul;143:105889.
    PMID: 37150138 DOI: 10.1016/j.jmbbm.2023.105889
    This work investigates the role of sintering temperature on bioactive glass-ceramics derived from the new composition CaO-P2O5-Na2O-B2O3-SiO2 glass system. The sintering behaviour of the samples' physical, structural, and mechanical properties is highlighted in this study. The experimental results indicated that the sintering process improved the crystallization and hardness of the final product. Results from XRD and FTIR showed the existence of carbonate apatite, pseudo-wollastonite, and wollastonite phases. From the results, the bioglass-ceramics sintered at 700 °C obtained the highest densification and optimum mechanical results. It had the value of 5.34 ± 0.21 GPa regarding microhardness and 2.99 ± 0.24 MPa m1/2 concerning fracture toughness, which falls in the range of the human enamel. Also, the sintered samples maintained their bioactivity and biodegradability after being tested in the PBS medium. The bioactivity does not affect but slows down the apatite formation rate. Overall results promoted the novel bioglass-ceramics as a candidate material for dental application.
  3. Al-Hada NM, Mohamed Kamari H, Abdullah CAC, Saion E, Shaari AH, Talib ZA, et al.
    Int J Nanomedicine, 2017;12:8309-8323.
    PMID: 29200844 DOI: 10.2147/IJN.S150405
    In the present study, binary oxide (cadmium oxide [CdO])x (zinc oxide [ZnO])1-x nanoparticles (NPs) at different concentrations of precursor in calcination temperature were prepared using thermal treatment technique. Cadmium and zinc nitrates (source of cadmium and zinc) with polyvinylpyrrolidone (capping agent) have been used to prepare (CdO)x (ZnO)1-x NPs samples. The sample was characterized by X-ray diffraction (XRD), scanning electron microscopy, energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. XRD patterns analysis revealed that NPs were formed after calcination, which showed a cubic and hexagonal crystalline structure of (CdO)x (ZnO)1-x NPs. The phase analysis using EDX spectroscopy and FTIR spectroscopy confirmed the presence of Cd and Zn as the original compounds of prepared (CdO)x (ZnO)1-x NP samples. The average particle size of the samples increased from 14 to 33 nm as the concentration of precursor increased from x=0.20 to x=0.80, as observed by TEM results. The surface composition and valance state of the prepared product NPs were determined by X-ray photoelectron spectroscopy (XPS) analyses. Diffuse UV-visible reflectance spectra were used to determine the optical band gap through the Kubelka-Munk equation; the energy band gap was found to decrease for CdO from 2.92 to 2.82 eV and for ZnO from 3.22 to 3.11 eV with increasing x value. Additionally, photoluminescence (PL) spectra revealed that the intensity in PL increased with an increase in particle size. In addition, the antibacterial activity of binary oxide NP was carried out in vitro against Escherichia coli ATCC 25922 Gram (-ve), Salmonella choleraesuis ATCC 10708, and Bacillus subtilis UPMC 1175 Gram (+ve). This study indicated that the zone of inhibition of 21 mm has good antibacterial activity toward the Gram-positive B. subtilis UPMC 1175.
  4. Shaifudin MS, Ghazali MSM, Kamaruzzaman WMIWM, Wan Abdullah WR, Kassim S, Ismail NQA, et al.
    Materials (Basel), 2021 Feb 03;14(4).
    PMID: 33546094 DOI: 10.3390/ma14040702
    This paper investigated the effects of Pr6O11 and Co3O4 on the electrical properties of ZnO-BaTiO3 varistor ceramics. The Pr6O11 doping has a notable influence on the characteristics of the nonlinear coefficient, varistor voltage, and leakage current where the values varied from 2.29 to 2.69, 12.36 to 68.36 V/mm and 599.33 to 548.16 µA/cm2, respectively. The nonlinear varistor coefficient of 5.50 to 7.15 and the varistor voltage of 7.38 to 8.10 V/mm was also influenced by the use of Co3O4 as a dopant. When the amount of Co3O4 was above 0.5 wt.%, the leakage current increased from 202.41 to 302.71 μA/cm2. The varistor ceramics with 1.5 wt.% Pr6O11 shows good nonlinear electrical performance at higher breakdown voltage and reduced the leakage current of the ceramic materials. Besides, the varistor sample that was doped with 0.5 wt.% Co3O4 was able to enhance the nonlinear electrical properties at low breakdown voltage with a smaller value of leakage current.
  5. Azis RS, Sulaiman S, Ibrahim IR, Zakaria A, Hassan J, Muda NNC, et al.
    Nanoscale Res Lett, 2018 May 23;13(1):160.
    PMID: 29796949 DOI: 10.1186/s11671-018-2562-x
    Synthesis of nanocrystalline strontium ferrite (SrFe12O19) via sol-gel is sensitive to its modification parameters. Therefore, in this study, an attempt of regulating the pH as a sol-gel modification parameter during preparation of SrFe12O19 nanoparticles sintered at a low sintering temperature of 900 °C has been presented. The relationship of varying pH (pH 0 to 8) on structural, microstructures, and magnetic behaviors of SrFe12O19 nanoparticles were characterized by X-ray diffraction (XRD), field emission scanning microscope (FESEM), and vibrating sample magnetometer (VSM). Varying the pH of precursor exhibited a strong effect on the sintered density, crystal structure and magnetic properties of the SrFe12O19 nanoparticles. As the pH is 0, the SrFe12O19 produced relatively largest density, saturation magnetization, Ms, and coercivity, Hc, at a low sintering temperature of 900 °C. The grain size of SrFe12O19 is obtained in the range of 73.6 to 133.3 nm. The porosity of the sample affected the density and the magnetic properties of the SrFe12O19 ferrite. It is suggested that the low-temperature sintered SrFe12O19 at pH 0 displayed Ms of 44.19 emu/g and Hc of 6403.6 Oe, possessing a significant potential for applying in low-temperature co-fired ceramic permanent magnet.
  6. Ibrahim IR, Matori KA, Ismail I, Awang Z, Rusly SNA, Nazlan R, et al.
    Sci Rep, 2020 Feb 21;10(1):3135.
    PMID: 32081972 DOI: 10.1038/s41598-020-60107-1
    Microwave absorption properties were systematically studied for double-layer carbon black/epoxy resin (CB) and Ni0.6Zn0.4Fe2O4/epoxy resin (F) nanocomposites in the frequency range of 8 to 18 GHz. The Ni0.6Zn0.4Fe2O4 nanoparticles were synthesized via high energy ball milling with subsequent sintering while carbon black was commercially purchased. The materials were later incorporated into epoxy resin to fabricate double-layer composite structures with total thicknesses of 2 and 3 mm. The CB1/F1, in which carbon black as matching and ferrite as absorbing layer with each thickness of 1 mm, showed the highest microwave absorption of more than 99.9%, with minimum reflection loss of -33.8 dB but with an absorption bandwidth of only 2.7 GHz. Double layer absorbers with F1/CB1(ferrite as matching and carbon black as absorbing layer with each thickness of 1 mm) structure showed the best microwave absorption performance in which more than 99% microwave energy were absorbed, with promising minimum reflection loss of -24.0 dB, along with a wider bandwidth of 4.8 GHz and yet with a reduced thickness of only 2 mm.
  7. Elmahaishi MF, Azis RS, Ismail I, Mustaffa MS, Abbas Z, Matori KA, et al.
    Materials (Basel), 2021 Nov 22;14(22).
    PMID: 34832475 DOI: 10.3390/ma14227075
    This study presents the utilization of mill scale waste, which has attracted much attention due to its high content of magnetite (Fe3O4). This work focuses on the extraction of Fe3O4 from mill scale waste via magnetic separation, and ball milling was used to fabricate a microwave absorber. The extracted magnetic powder was ground-milled using two different techniques: (i) a conventional milling technique (CM) and (ii) mechanical alloying (MM) process. The Fe3O4/CM samples were prepared by a conventional milling process using steel pot ball milling, while the Fe3O4/MM samples were prepared using a high-energy ball milling (HEBM) method. The effect of milling time on the structural, phase composition, and electromagnetic properties were examined using X-ray diffraction (XRD) and a vector network analyzer (VNA). XRD confirmed the formation of magnetite after both the magnetic separation and milling processes. The results revealed that Fe3O4 exhibited excellent microwave absorption properties because of the synergistic characteristics of its dielectric and magnetic loss. The results showed that the Fe3O4/CM particle powder had a greater absorption power (reflection loss:
  8. Kamaruzzaman WMIWM, Fekeri MFM, Nasir NAM, Hamidi NASM, Baharom MZ, Adnan A, et al.
    Molecules, 2021 Jun 03;26(11).
    PMID: 34205014 DOI: 10.3390/molecules26113379
    With the trend for green technology, the study focused on utilizing a forgotten herb to produce an eco-friendly coating. Andrographis paniculata or the kalmegh leaves extract (KLE) has been investigated for its abilities in retarding the corrosion process due to its excellent anti-oxidative and antimicrobial properties. Here, KLE was employed as a novel additive in coatings and formulations were made by varying its wt%: 0, 3, 6, 9, and 12. These were applied to stainless steel 316L immersed in seawater for up to 50 days. The samples were characterized and analyzed to measure effectiveness of inhibition of corrosion and microbial growth. The best concentration was revealed to be 6 wt% KLE; it exhibited the highest performance in improving the ionic resistance of the coating and reducing the growth of bacteria.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links