Materials and Methods: In this study, six configurations using cold vaccine boxes or bags made with different materials, with and without insulation, of different sizes, and number of coolant-packs were used to simulate the configuration used by the pharmaceutical wholesalers for transportation of vaccine. Model vaccines (vial, n=10) were packed using these six configurations which then stored in an incubator at 38℃ and monitored for 24 hours. Each configuration was tested repeatedly for 5 times.
Results: In term of compliance to 2℃-8℃, four out of six tested configurations are effective in cold chain transportation. The effectiveness is highly dependent on the type of passive containers used, size of cold boxes, insulation, and number of coolant-packs. The configuration with a larger polystyrene foam box with five coolant-packs maintained the required temperature up to 23 hours. In contrast, configurations using a polystyrene foam box with four coolant-packs and a large vaccine cold box with two coolant-packs failed to reach below 8℃ throughout the 24 hours.
Conclusion: Packaging method, the material and size of the container could have a direct impact on the effectiveness of cold chain temperature maintenance. Polystyrene foam box, cold box with polyethylene interior lining and polypropylene insulation, a cooler bag with proper number of ice packs could be effectively used for transportation of vaccines within their respective transportation duration allowance.
METHODS: A micelle was prepared using the film hydration method, and the micellar solution was lyophilized. The cake formed was analyzed. The factors investigated include the concentrations of the surfactants, ratio of vitamin E TPGS/Poloxamer 407, temperature of the hydrating solution, duration of hydration, and freezing temperature before lyophilization. The effects of these factors on the encapsulation efficiency and particle size of the micelle were also studied. The encapsulation efficiency was measured using a UV-Vis spectrophotometer, while particle size was measured using dynamic light scattering.
RESULTS: The optimized micelle was found to have 90% encapsulation efficiency with a particle size of less than 40 nm, which was achieved using a 10% concentration of surfactants at a vitamin E TPGS/Poloxamer 407 ratio of 3:1. The optimized temperature for hydrating the micellar film was 40 °C, the optimized mixing time was 1 h, and the optimized freezing temperature was -80 °C. The solubility of the luteolin-loaded micelles increased 459-fold compared to pure Lut in water. The critical micelle concentration of the vitamin E TPGS/Poloxamer 407 micelle was 0.001 mg/mL, and the release study showed that luteolin-loaded micelles exhibited sustained release behavior. The release of luteolin from a micelle was found to be higher in pH 6.8 compared to pH 7.4, which signified that luteolin could be accumulated more in a tumor microenvironment compared to blood.
CONCLUSION: This study demonstrated that several factors need to be considered when developing such nanoparticles in order to obtain a well-optimized micelle.
OBJECTIVE: This research was proposed to develop a co-processed excipient composed of xylitol, mannitol, and microcrystalline cellulose for the formulation of ODTs.
METHODS: A total of 11 formulations of co-processed excipients with different ratios of ingredients were prepared, which were then compressed into ODTs, and their characteristics were thoroughly examined. The primary focus was on evaluating the disintegration time and hardness of the tablets, as these factors are important in ensuring the ODTs meet the desired criteria. The model drug, Mirtazapine was then incorporated into the chosen optimized formulation.
RESULTS: The results showed that the formulation comprised of 10% xylitol, 10% mannitol and 80% microcrystalline cellulose demonstrated the fastest disintegration time (1.77 ± 0.119 min) and sufficient hardness (3.521 ± 0.143 kg) compared to the other formulations. Furthermore, the drug was uniformly distributed within the tablets and fully released within 15 min.
CONCLUSION: Therefore, the developed co-processed excipients show great potential in enhancing the functionalities of ODTs, offering a promising solution to improve the overall performance and usability of ODTs in various therapeutic applications.