Biology of Termites: A Modern Synthesis (Bignell DE, Roisin Y, Lo N, (Editors), Springer, Dordrecht, 576pp, ISBN 978-90-481-3976-7, e-ISBN 978-90-481-3977-4, DOI 10.1007/978-90-481-3977-4) was published in 2011. With the agreement of the publishers, we give a taxonomic index of the book comprising 494 termite entries, 103 entries of other multicellular animal species mentioned as associates or predators of termites, with 9 fungal, 60 protist, and 64 prokaryote identities, which are listed as termite symbionts (sensu stricto). In addition, we add descriptive authorities for living (and some fossil) termite genera and species. Higher taxonomic groupings for termites are indicated by 25 code numbers. Microorganisms (prokaryotes, protists, and fungi) are listed separately, using broad modern taxonomic affiliations from the contemporary literature of bacteriology, protozoology, and mycology.
Slurry acidification has been shown to be effective in reducing environmentally damaging gases. However, this involved the use of concentrated acids on farms. Therefore, due to the health and safety concerns, there is an interest in self-acidification of slurry technique. This study was designed to determine the microbial dynamics leading to self-acidification of slurry. A fresh cattle slurry was amended 10% brewing sugar and stored over 30 days. This fermentable carbon source promoted self-acidification of the slurry from pH 7.0 to 4.7 within four days, and was associated with the accumulation of lactic acid and a reduction in methane and relative ammonia emissions. A metagenomics approach through next generation sequencing (NGS) using an Illumina MiSeq platform was used to determine the microbial diversity and dynamics (bacteria and archaea) in the stored amended slurry. 16S ribosomal ribonucleic acid (rRNA) sequence data revealed the presence of the Order of Lactobacillales was associated with the lactic acid production. The operational taxonomic units (OTUs) abundance indicates that the methanogenic community was dominated by hydrogenotrophic methanogens from the member Order of Methanobacteriales, Methanomicrobiales, and Methanosarcinales. The decrease in tolerance by the methanogens in the self-acidified slurry was probably the main reason for the reduced methane emission. These results confirm, at the microbial level, the mechanism of inhibiting methane production via self-acidification during storage period.
ABSTRACT A previously undescribed leaf spot disease of banana has been discovered in southern and Southeast Asia. The fungus identified as the causal agent of this leaf spot has a Mycosphaerella teleomorph stage and a Septoria anamorph stage. Isolation and reinoculation of the fungus to banana reproduced symptoms and confirmed its pathogenicity. Phylogenic analysis based on sequences of the internal transcribed spacer and 5.8S ribosomal DNA regions from the different leaf spot pathogens of bananas was consistent with the definition of a new species. M. eumusae (anamorph S. eumusae) is the name proposed for the causal agent and Septoria leaf spot as the name for the disease. The presence of the pathogen has been confirmed in leaf specimens from southern India, Sri Lanka, Thailand, Malaysia, Vietnam, Mauritius, and Nigeria.
Punctal plugs (PPs) are miniature medical implants that were initially developed for the treatment of dry eyes. Since their introduction in 1975, many PPs made from different materials and designs have been developed. PPs, albeit generally successful, suffer from drawbacks such as epiphora and suppurative canaliculitis. To overcome these issues intelligent designs of PPs were proposed (e.g. SmartPLUG™ and Form Fit™). PPs are also gaining interest among pharmaceutical scientists for sustaining drug delivery to the eye. This review aims to provide an overview of PPs for dry eye treatment and drug delivery to treat a range of ocular diseases. It also discusses current challenges in using PPs for ocular diseases.
We report on measurements of integral cross sections (ICSs) for electron impact excitation of a series of composite vibrational modes and electronic-states in phenol, where the energy range of those experiments was 15-250 eV. There are currently no other results against which we can directly compare those measured data. We also report results from our independent atom model with screened additivity rule correction computations, namely, for the inelastic ICS (all discrete electronic states and neutral dissociation) and the total ionisation ICS. In addition, for the relevant dipole-allowed excited electronic states, we also report f-scaled Born-level and energy-corrected and f-scaled Born-level (BEf-scaled) ICS. Where possible, our measured and calculated ICSs are compared against one another with the general level of accord between them being satisfactory to within the measurement uncertainties.
A synthesis is presented of sampling work conducted under a UK government-funded Darwin Initiative grant undertaken predominantly within the Danum Valley Conservation Area (DVCA), Sabah, East Malaysia. The project concerned the assemblage structure, gas physiology and landscape gas fluxes of termites in pristine and two ages of secondary, dipterocarp forest. The DVCA termite fauna is typical of the Sunda region, dominated by Termes-group soil-feeders and Nasutitermitinae. Selective logging appears to have relatively little effect on termite assemblages, although soil-feeding termites may be moderately affected by this level of disturbance. Species composition changes, but to a small extent when considered against the background level of compositional differences within the Sunda region. Physiologically the assemblage is very like others that have been studied, although there are some species that do not fit on the expected body size-metabolic rate curve. As elsewhere, soil-feeders and soil-wood interface-feeders tend to produce more methane. As with the termite assemblage characteristics, gross gas and energy fluxes do not differ significantly between logged and unlogged sites. Although gross methane fluxes are high, all the soils at DVCA were methane sinks, suggesting that methane oxidation by methanotrophic bacteria was a more important process than methane production by gut archaea. This implies that methane production by termites in South-East Asia is not contributing significantly to the observed increase in levels of methane production worldwide. Biomass density, species richness, clade complement and energy flow were much lower at DVCA than at a directly comparable site in southern Cameroon. This is probably due to the different biogeographical histories of the areas.
Anti-glaucoma latanoprost-loaded ocular implants provide prolonged delivery and enhanced bioavailability relative to the conventional eye drops. This study aims at the development and validation of a reversed-phase high-performance liquid chromatography method for quantitative analysis of nanogram levels of latanoprost in the eye, and for the first time, compares the use of fluorescence vs ultraviolet (UV) detectors in latanoprost quantification. The mobile phase was composed of acetonitrile:0.1% v/v formic acid (60:40, v/v) with a flow rate of 1 mL/min and separation was done using a C18 column at temperature 40°C. The fluorescence excitation and emission wavelengths were set at 265 and 285 nm, respectively, while the UV absorption was measured at 200 nm. The latanoprost concentration-peak area relationship maintained its linearity (R2 = 0.9999) over concentration ranges of 0.063-10 μg/mL and 0.212-10 μg/mL for the fluorescence and UV detectors, respectively. The UV detector showed better precision, while the fluorescence detector exhibited higher robustness and greater sensitivity, with a detection limit of 0.021 μg/mL. The fluorescence detector was selected for quantification of latanoprost released from ocular implants in vitro and in porcine ocular tissues. The developed method is a robust, rapid and cost-effective alternative to liquid chromatography-mass spectrometry for routine analysis of latanoprost released from ocular implants.
Bevacizumab is a full-length human monoclonal antibody used to treat various neovascular diseases such as wet age-related macular degeneration (AMD), diabetic eye disease and other problems of the retina. Monthly intravitreal injections of bevacizumab (Avastin®) are effective in the treatment of wet AMD. However, there is a growing demand in the development of sustained release ophthalmic formulations. Therefore, this study aims, for the first time, to develop a rapid, simple, and sensitive method using size exclusion chromatography coupled with fluorescence detection for routine quantification of bevacizumab in ophthalmic formulations and during in vitro release studies. The selected chromatographic conditions included an aqueous mobile phase composed of 35 mM sodium phosphate buffer and 300 mM sodium chloride (pH 6.8), a flow rate of 0.5 mL/min, and the fluorescence detector was operated at excitation and emission wavelengths of 280 and 340 nm, respectively. The peak area-concentration relationship maintained its linearity over concentration range of 0.1-20 μg/mL (R2 = 0.9993), and the quantitation limit was 100 ng/mL. The method was validated for specificity, accuracy, precision, and robustness. The developed method had a run time of 6 min at temperature 25 °C, making it a unique validated method for rapid and cost-effective quantification of bevacizumab.
In this article we present ultra-sensitive, silicon nanowire (SiNW)-based biosensor devices for the detection of disease biomarkers. An electrochemically induced functionalisation method has been employed to graft antibodies targeted against the prostate cancer risk biomarker 8-hydroxydeoxyguanosine (8-OHdG) to SiNW surfaces. The antibody-functionalised SiNW sensor has been used to detect binding of the 8-OHdG biomarker to the SiNW surface within seconds of exposure. Detection of 8-OHdG concentrations as low as 1 ng/ml (3.5 nM) has been demonstrated. The active device has been bonded to a disposable printed circuit which can be inserted into an electronic readout system as part of an integrated Point of Care (POC) diagnostic. The speed, sensitivity and ease of detection of biomarkers using SiNW sensors render them ideal for eventual POC diagnostics.
Hypertension is a complex and modifiable condition in which environmental factors contribute to both onset and progression. Recent evidence has accumulated for roles of diet and the gut microbiome as environmental factors in blood pressure regulation. However, this is complex because gut microbiomes are a unique feature of each individual reflecting that individual's developmental and environmental history creating caveats for both experimental models and human studies. Here, we describe guidelines for conducting gut microbiome studies in experimental and clinical hypertension. We provide a complete guide for authors on proper design, analyses, and reporting of gut microbiota/microbiome and metabolite studies and checklists that can be used by reviewers and editors to support robust reporting and interpretation. We discuss factors that modulate the gut microbiota in animal (eg, cohort, controls, diet, developmental age, housing, sex, and models used) and human studies (eg, blood pressure measurement and medication, body mass index, demographic characteristics including age, cultural identification, living structure, sex and socioeconomic environment, and exclusion criteria). We also provide best practice advice on sampling, storage of fecal/cecal samples, DNA extraction, sequencing methods (including metagenomics and 16S rRNA), and computational analyses. Finally, we discuss the measurement of short-chain fatty acids, metabolites produced by the gut microbiota, and interpretation of data. These guidelines should support better transparency, reproducibility, and translation of findings in the field of gut microbiota/microbiome in hypertension and cardiovascular disease.