Microbulbifer sp. CCB-MM1 is a halophile isolated from estuarine sediment of Matang Mangrove Forest, Malaysia. Based on 16S rRNA gene sequence analysis, strain CCB-MM1 is a potentially new species of genus Microbulbifer. Here we describe its features and present its complete genome sequence with annotation. The genome sequence is 3.86 Mb in size with GC content of 58.85%, harbouring 3313 protein coding genes and 92 RNA genes. A total of 71 genes associated with carbohydrate active enzymes were found using dbCAN. Ectoine biosynthetic genes, ectABC operon and ask_ect were detected using antiSMASH 3.0. Cell shape determination genes, mreBCD operon, rodA and rodZ were annotated, congruent with the rod-coccus cell cycle of the strain CCB-MM1. In addition, putative mreBCD operon regulatory gene, bolA was detected, which might be associated with the regulation of rod-coccus cell cycle observed from the strain.
Vibrio sp. strain CCB-PB317 with potential arsenic detoxification was isolated from a mangrove in Pulau Betong, Malaysia. Here, we report a draft genome sequence of strain CCB-PB317, which comprised 5,157,574 bp with a G+C content of 44.9%. The genome contains genes related to an arsenic resistance system coupled with glycolytic metabolism.
Among the enzymes required for the efficient utilisation of pectin is polygalacturonase. Saccharobesus litoralis harbours two polygalacturonases belonging to glycoside hydrolase family 28 (GH28). One of them, PGQ1, cleaved polygalacturonate exolytically at the non-reducing end into monomeric units. It was most active at 60 °C and pH 8, with Km and kcat values of 2.3 mg/ml and 6.4 s-1 respectively. Its homology model of a right-handed parallel β-helix core consisted of Asp297 as the general acid and either Asp276 or Asp298 as the general base. By inferring the substrate binding modes at the -1 and +1 subsites from known crystal structures, a hexagalacturonate could be docked into the highly electropositive binding cleft. Interestingly, while no residues were present in the vicinity to make up the +2 and +4 subsites, Arg361 and Arg430 could readily bind to the carboxyl groups of the galacturonates at the +3 and +5 subsites respectively. Structural comparison suggested that this binding pattern with missing subsites might be unique to closely related exopolygalacturonases. As S. litoralis grew much more slowly on extracellular galacturonate due to the lack of a transporter for the monosaccharide, PGQ1 probably functioned in the periplasm to help degrade oligopectates completely.Communicated by Ramaswamy H. Sarma.
The genus Aureispira consisting of two species, Aureispira marina and Aureispira maritima is an arachidonic acid-producing bacterium and produces secondary metabolites. In this study, we isolated a new Aureispira strain, Aureispira sp. CCB-QB1 from coastal area of Penang, Malaysia and the genome sequence of this strain was determined. The draft genome of this strain is composed of 185 contigs for 7,370,077 bases with 35.6% G+C content and contains 5911 protein-coding genes and 76 RNA genes. Linoleoyl-CoA desaturase, the key gene in arachidonic acid biosynthesis, is present in the genome. It was found that this strain uses mevalonate pathway for the synthesis of geranylgeranyl diphosphate (GGPP), which is precursor of diterpenoid, and novel pathway via futalosine for the synthesis of menaquinones. This is the first draft genome sequence of a member of the genus Aureispira.
To date, the genus Mangrovimonas consists of only one species, Mangrovimonas yunxiaonensis strain LY01 that is known to have algicidal effects against harmful algal blooms (HABs) of Alexandrium tamarense. In this study, the whole genome sequence of three Mangrovimonas-like strains, TPBH4(T)(=LMG 28913(T),=JCM 30882(T)), ST2L12(T)(=LMG 28914(T),=JCM 30880(T)) and ST2L15(T)(=LMG 28915(T),=JCM 30881(T)) isolated from estuarine mangrove sediments in Perak, Malaysia were described. The sequenced genomes had a range of assembly size ranging from 3.56 Mb to 4.15 Mb which are significantly larger than that of M. yunxiaonensis LY01 (2.67 Mb). Xylan, xylose, L-arabinan and L-arabinose utilization genes were found in the genome sequences of the three Mangrovimonas-like strains described in this study. In contrast, these carbohydrate metabolism genes were not found in the genome sequence of LY01. In addition, TPBH4(T) and ST2L12(T) show capability to degrade xylan using qualitative plate assay method.