METHODS: The effect of P. amarus-generated TLY on DCs maturation was evaluated by determination of MHC class I, II and CD 11c expression as well as the co-stimulatory molecules CD 83 and 86 by using flow cytometry. The phagocytic capacity of TLY-pulsed DCs was investigated through FITC-dextran uptake by using flow cytometry. The effect on the cytokines release including IL-12, IL-6 and IL-10 was elucidated by using ELISA. The migration capacity and T cell proliferation activity of pulsed DCs were measured. The relative gene expression levels of cytokines were determined by using qRT-PCR. The major constituents of P. amarus extract were qualitatively and quantitatively analyzed by using validated reversed-phase high performance liquid chromatography (HPLC) methods.
RESULTS: P. amarus-generated TLY significantly up-regulated the expression levels of MHC class I, CD 11 c, CD 83 and 86 in pulsed DCs. The release of interleukin IL-12 and IL-6 was enhanced by TLY-DCs at a ratio of 1 DC: 3 tumor apoptotic bodies (APO), however, the release of IL-10 was suppressed. The migration ability as well as allogeneic T-cell proliferation activities of loaded DCs were significantly enhanced, but their phagocytic capacity was highly attenuated. The gene expression profiles for IL-12 and IL-6 of DCs showed increase in their mRNA gene expression in TLY pulsed DCs versus unloaded and LPS-treated only DCs.
CONCLUSION: The effect of P. amarus-generated TLY on the immune effector mechanisms of DCs verified its potential to induce an in vitro anti-tumor immune response against the recognized tumor antigen.
Results: Our results demonstrated that the viability of GdCl3 treated V79-4 cells was significantly (p 0.05) DNA damage both in the presence and absence of metabolic activation. However, it induced significant (p
RESULTS: The FLDP-5 and FLDP-8 curcuminoid analogues induced LN-18 cell death through apoptosis in a concentration-dependent manner following 24 h of treatment. These analogues induced apoptosis in LN-18 cells through significant loss of mitochondrial mass and mitochondrial membrane potential (MMP) as early as 1-hour of treatment. Interestingly, N-acetyl-l-cysteine (NAC) pretreatment did not abolish the apoptosis induced by these analogues, further confirming the cell death process is independent of ROS. However, the apoptosis induced by the analogues is caspases-dependent, whereby pan-caspase pretreatment inhibited the curcuminoid analogues-induced apoptosis. The apoptotic cell death progressed with the activation of both caspase-8 and caspase-9, which eventually led to the activation of caspase-3, as confirmed by immunoblotting. Moreover, the existing over-expression of miRNA-21 in LN-18 cells was suppressed following treatment with both analogues, which suggested the down-regulation of the miRNA-21 facilitates the cell death process.
CONCLUSION: The FLDP-5 and FLDP-8 curcuminoid analogues downregulate the miRNA-21 expression and induce extrinsic and intrinsic apoptotic pathways in LN-18 cells.
PURPOSE: To evaluate the anti-atherogenic mechanism of 80% ethanol extract of CV leaves on tumor necrosis factor-α (TNF-α)-activated human umbilical vein endothelial cells (HUVECs).
METHODS: Qualitative analysis of the CV extract was carried out by using liquid chromatography with tandem mass spectrometry (LC-MS/MS). The cell viability of HUVECs treated with CV extract was determined by MTT assay. The effect of CV extract on monocyte adhesion was determined by monocyte-endothelial adhesion assay. Protein expressions of ICAM-1, VCAM-1 and nuclear factor-kappa B (NF-κB) signaling pathway were determined by western blot while production of monocyte chemoattractant protein-1 (MCP-1) was determined by ELISA.
RESULTS: LC-MS/MS analysis showed that CV extract composed of five main compounds, including schaftoside, orientin, isovitexin, 6-caffeoyl-D-glucose, and 3,3'-di-O-methyl ellagic acid. Treatment of CV extract at a concentration range from 5 to 60 µg/mL for 24 h maintained HUVECs viability above 90 %, therefore concentrations of 20, 40 and 60 μg/mL were selected for the subsequent experiments. All concentrations of CV extract showed a significant inhibitory effect on monocyte adhesion to TNF-α-activated HUVECs (p
METHODS: The two ONBDC derivatives - ONBDC 1 (dimethyltin(IV) N-ethyl-N-benzyldithiocarbamate) and ONBDC 2 (triphenyltin(IV) N-ethyl-N-benzyldithiocarbamate) - were synthesized via the reaction of tin(IV) chloride with N-ethylbenzylamine in the presence of carbon disulfide. A range of analytical techniques, including elemental analysis, IR spectroscopy, NMR spectroscopy, UV-Vis spectrometry, TGA/DTA analysis, and X-ray crystallography, was conducted to characterize these compounds comprehensively. The cytotoxic effects of ONBDCs against A549 cells were evaluated using MTT assay.
RESULTS: Both compounds were synthesized and characterized successfully via elemental and spectroscopies analysis. MTT assay revealed that ONBDC 2 demonstrated remarkable cytotoxicity towards A549 cells, with an IC50 value of 0.52 μM. Additionally, ONBDC 2 displayed significantly higher cytotoxic activity against the A549 cell line when compared to the commercially available chemotherapeutic agent cisplatin (IC50: 32 μM).
CONCLUSION: Thus, it was shown that ONBDC 2 could have important anticancer properties and should be further explored as a top contender for creating improved and specialized cancer treatments.
METHODS: C. nutans leaves was extracted with 50-100% ethanol or deionised water at 1% (w/v). Human umbilical veins endothelial cell (HUVEC) proliferation was examined using MTT assay. The in vitro anti-angiogenic effects of C. nutans were assessed using wound scratch, tube formation and transwell migration assays. The VEGF levels secreted by human oral squamous cell carcinoma (HSC-4) cell and HUVEC permeability were also measured. Besides, the rat aortic ring and chick embryo chorioallantoic membrane (CAM) assays, representing ex vivo and in vivo models, respectively, were performed.
RESULTS: The MTT assay revealed that water extract of C. nutans leaves exhibited the highest activity, compared to the ethanol extracts. Therefore, the water extract was chosen for subsequent experiments. C. nutans leaf extract significantly suppressed endothelial cell proliferation and migration in both absence and presence of VEGF. However, the water extract failed to suppress HUVEC transmigration, differentiation and permeability. C. nutans water extract also did not suppress HSC-4 cell-induced VEGF production. Importantly, C. nutans water extract significantly abolished the sprouting of vessels in aortic rings as well as in chick embryo CAM.
CONCLUSION: In conclusion, these findings reveal potential anti-angiogenic effects of C. nutans, providing new evidence for its potential application as an anti-angiogenic agent.