A combination of phosphoric acid (H3PO4) 20% v/v impregnation and carbonization method was employed to convert honeydew rind into activated carbons (ACPHDR) for Zn(II) and Cr(III) removal aqueous solution. The characterization of ACPDHR by N2 sorption, iodine number and Boehm analysis result 1272 m2/g surface area, 1174 mg/g and 1.13 mmol/g total acidic functional groups respectively. Fourier transform infrared (FTIR) and Field emission scanning electron microscopy-electron dispersed microscopy (FESEM-EDX) analysis of unloaded and metal-loaded carbon showed shifted of significance peaks and the changes of surface morphology of the sorbent. The adsorption was optimized at pH, shaking duration, initial metal concentration and mass of adsorbent of 5.5, 40 min and 500 mg/L, 0.4 g for Zn(II) and 4, 40 min, 1000 mg/L, 0.1 g for Cr(III) removal. It is concluded that the metal removal was influenced by pH solution, contact time, initial metal concentration and mass of adsorbent. The highest removal of Zn(II) and Cr(III) was observed at 84.24% and 90.10% respectively. Waste from honeydew will be benefited from this research which offer a cheaper alternative precursor to coal based activated carbons.
In the present work, the title chalcone, (2E)-3-(4-fluorophenyl)-1-(4-{[(1E)-(4-fluorophenyl) methylene]amino}phenyl)prop-2-en-1-one (abbreviated as FAMFC), was synthesized and structurally characterized by single-crystal X-ray diffraction. The compound is crystallized in the monoclinic system with non-centrosymmetric space group P21 and hence it satisfies the essential condition for materials to exhibit second-order nonlinear optical properties. The molecular structure was further confirmed by using FT-IR and 1H NMR spectroscopic techniques. The title crystal is transparent in the Vis-NIR region and has a direct band gap. The third-order nonlinear optical properties were investigated in solution (0.01M) by Z-scan technique using a continuous wave (CW) DPSS laser at the wavelength of 532nm. The title chalcone exhibited significant two-photon absorption (β=35.8×10-5cmW-1), negative nonlinear refraction (n2=-0.18×10-8cm2W-1) and optical limiting (OL threshold=2.73kJcm-2) under the CW regime. In support of the experimental results, a comprehensive theoretical study was carried out on the molecule of FAMFC using density functional theory (DFT). The optimized geometries and frontier molecular orbitals were calculated by employing B3LYP/6-31+G level of theory. The optimized molecular structure was confirmed computationally by IR vibrational and 1H NMR spectral analysis. The experimental UV-Vis-NIR spectrum was interpreted using computational chemistry under time-dependent DFT. The static and dynamic NLO properties such as dipole moments (μ), polarizability (α), and first hyperpolarizabilities (β) were computed by using finite field method. The obtained dynamic first hyperpolarizability β(-2ω;ω,ω) at input frequency ω=0.04282a.u. is predicted to be 161 times higher than urea standard. The electronic excitation energies and HOMO-LUMO band gap for FAMFC were also evaluated by DFT. The experimental and theoretical results are in good agreement, and the NLO study suggests that FAMFC molecule can be a potential candidate in the nonlinear optical applications.
Uncontrolled disposal of feathers from the poultry industry and slaughterhouses is environmentally undesirable. The feathers are composed of approximately 90% of keratin which is an important ingredient of cosmetics, shampoos and hair treatment creams. This study aimed to determine the optimum conditions for the extraction of keratin from chicken feathers. The extraction of keratin using various reducing agents was studied using statistical experimental design. In the extraction process, pH, temperature, ratio of reducing agents, mass of chicken feathers and incubation time were analyzed. The keratin in the total extracted protein was purified by size exclusion chromatography, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and further characterized using amino acids profile analysis. The surface morphology and chemical composition were studied by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis. Sodium sulfide (Na2S) yielded 84.5% of keratin as compared to sodium hydroxide (43.8), urea mixture (50.6), mixture of sodium dodecyl sulfate (SDS) and sodium bisulfite (18.3) and a mixture of Na2S and sodium hydroxide (41.5%) under optimized conditions. The optimum yield of keratin was achieved at 80.9 °C in 9.5 h with 0.05 M sodium sulfide using response surface methodology (RSM). Among the five parameters screened, pH was found not to be significant because the p value was greater than 0.05.
In this study, the physical, morphological, mechanical and thermal properties of furfuryl alcohol/2-ethylhexyl methacrylate/halloysite nanoclay wood polymer nanocomposites (FA-co-EHMA-HNC WPNCs) were investigated. FA-co-EHMA-HNC WPNCs were prepared via an impregnation method and the properties of the nanocomposites were characterized through the weight percent gain, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), three-point flexural test, dynamic mechanical thermal analysis (DMTA), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) analysis and moisture absorption test. The weight percent gain in the 50:50 FA-co-EHMA-HNC WPNC was the highest compared with the raw wood (RW) and other WPNCs. The FT-IR results confirmed that polymerization took place in the nanocomposites, especially 50:50 FA-co-EHMA-HNC WPNC, which had a reduced amount of hydroxyl groups. The SEM results revealed that the 50:50 FA-co-EHMA-HNC WPNC had the smoothest and most uniform surface among all of the nanocomposites. The 50:50 FA-co-EHMA-HNC WPNC showed the highest flexural strength and modulus of elasticity. The results revealed that the storage modulus and loss modulus of the FA-co-EHMA-HNC WPNCs were higher and the tan δ of FA-co-EHMA-HNC WNPCs was lower compared with the RW. The FA-co-EHMA-HNC WPNCs exhibited the higher thermal stability in the TGA and DSC analysis. The 50:50 FA-co-EHMA-HNC WPNC exhibited remarkably lower moisture absorption compared with the RW. Overall, this study proved that the ratio 50:50 FA-co-EHMA ratio was the most suitable for introduction in the in the RW.
The aqueous extract of various plants like Coriandrum sativum (AECS), Alternanthera tenella colla (AEAT), Spermacoce hispida (AESH) and Mollugo verticillata (AEMV) was studied for its hexavalent chromium (CrVI) reduction property. Even though antioxidant activity was present, AEAT, AESH and AEMV did not reduce CrVI. AECS showed rapid and dose-dependent CrVI reduction. The efficient reduction of 50 mg/L of CrVI using AECS was attained in the presence of 250 µg/mL of starting plant material, incubating the reaction mixture at pH 2, 30°C and agitation at 190 rpm. Under such conditions, about 40 mg/L of CrVI was reduced at 3 h of incubation. FT-IR analysis revealed the involvement of phenols, alcohols, alpha-hydroxy acid and flavonoids present in the AECS for the CrVI reduction. These results indicate that not all the plant extracts with rich antioxidants are capable of reducing CrVI. Using the conditions standardized in the present study, AECS reduced about 80% of CrVI present in the tannery effluent. These results signify the application of AECS as an eco-friendly method in the wastewater treatment.
The chitosan/polyvinyl alcohol/TiO2 composite was synthesized. Two different degrees of deacetylation of chitosan were prepared by hydrolysis to compare the effectiveness of them. The composite was analyzed via field emission scanning electron microscopy, Fourier transform infrared, X-ray diffraction, thermal gravimetric analysis, weight loss test and adsorption study. The FTIR and XRD results proved the interaction among chitosan, PVA and TiO2 without any chemical reaction. It was found that, chitosan with higher degree of deacetylation has better stability. Furthermore, it also showed that higher DD of chitosan required less time to reach equilibrium for methyl orange. The adsorption followed the pseudo-second-order kinetic model. The Langmuir and Freundlich isotherm models were fitted well for isotherm study. Adsorption capacity was higher for the composite containing chitosan with higher DD. The dye removal rate was independent of the dye's initial concentration. The adsorption capacity was increased with temperature and it was found from reusability test that the composite containing chitosan with higher DD is more reusable. It was notable that adsorption capacity was even after 15 runs. Therefore, chitosan/PVA/TiO2 composite can be a very useful material for dye removal.
Microplastics (<5 mm) were extracted from sediment cores collected in Japan, Thailand, Malaysia, and South Africa by density separation after hydrogen peroxide treatment to remove biofilms were and identified using FTIR. Carbonyl and vinyl indices were used to avoid counting biopolymers as plastics. Microplastics composed of variety of polymers, including polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethyleneterphthalates (PET), polyethylene-polypropylene copolymer (PEP), and polyacrylates (PAK), were identified in the sediment. We measured microplastics between 315 µm and 5 mm, most of which were in the range 315 µm-1 mm. The abundance of microplastics in surface sediment varied from 100 pieces/kg-dry sediment in a core collected in the Gulf of Thailand to 1900 pieces/kg-dry sediment in a core collected in a canal in Tokyo Bay. A far higher stock of PE and PP composed microplastics in sediment compared with surface water samples collected in a canal in Tokyo Bay suggests that sediment is an important sink for microplastics. In dated sediment cores from Japan, microplastic pollution started in 1950s, and their abundance increased markedly toward the surface layer (i.e., 2000s). In all sediment cores from Japan, Thailand, Malaysia, and South Africa, the abundance of microplastics increased toward the surface, suggesting the global occurrence of and an increase in microplastic pollution over time.
The present study explores the utilisation of a new raw material from lignocellulose biomass, Meranti wood sawdust (MWS) for high commercial value xylooligosaccharides (XOS) production using immobilised xylanase. The xylanase was immobilised by a combination of entrapment and covalent binding techniques. The hemicellulosic xylan from MWS was extracted using a standard chlorite delignification method. The production of total and derivatives of XOS from the degradation of the hemicellulosic xylan of MWS were compared to the production from the commercial xylan from Beechwood. The utilisation of the extracted xylan from MWS yielded 0.36 mg/mL of total XOS after 60 h of hydrolysis. During the hydrolysis reaction, the immobilised xylanase released a lower degree of polymerisation (DP) of XOS, mainly X2 and X3, which were the major products of xylan degradation by xylanase enzymes. The production of XOS with a lower DP from MWS demonstrated the biotechnological potential of the MWS in the future. The XOS production retained about 70% of its initial XOS production during the second cycle. This is also the first report on the utilisation of MWS wastes in enzymatic hydrolysis using immobilised xylanase for XOS production.
Solid polymer electrolytes electrolytes based Poly
(ethylene oxide) (PEO) complexed with sodium
trifluoromethanesulfonate (NaCF3SO3
) salt were prepared by
using solution cast technique. Ion-polymer ionic conductivity
and interaction studies have been reported by Electrical
Impedance spectroscopy (EIS) and Fourier transform infrared
spectroscopy (FTIR). FTIR studies suggested that there are
stronger interaction between Na+
ions and the polymer than
interaction of anions cations of the salt. The temperature
dependance electrical conductivity of polymer electrolytes films
follow Arrhenius relation and the low activation energy 0.2993
eV was observed for PEO-18 wt. % NaCF3SO3 below 323 K.
Lanthanum substituted Ni-Zn ferrite nanoparticles (Ni0.5Zn0.5LaxFe1-xO4; 0.00 ≤x≤ 1.00) synthesized by sol-gel method were presented. X-ray diffraction patterns reveal the typical single phase spinel cubic ferrite structure, with the traces of secondary phase for lanthanum substituted nanocrystals. In addition, the structural analysis also demonstrates that the average crystallite size varied in the range of 21-25 nm. FTIR spectra present the two prominent absorption bands in the range of 400 to 600 cm-1 which are the fingerprint region of all ferrites. Surface morphology of both substituted and unsubstituted Ni-Zn ferrite nanoparticle samples was studied using FESEM technique and it indicates a significant increase in the size of spherical shaped particles with La3+ substitution. Magnetic properties of all samples were analyzed using vibrating sample magnetometer (VSM). The results revealed that saturation magnetization (Ms) and coercivity (Hc) of La3+ substituted samples has decreased as compared to the Ni-Zn ferrite samples. Hence, the observed results affirm that the lanthanum ion substitution has greatly influenced the structural, morphology and magnetic properties of Ni-Zn ferrite nanoparticles.
Pharmaceutical residues are emerging pollutants in the aquatic environment and their removal by conventional wastewater treatment methods has proven to be ineffective. This research aimed to develop a three-dimensional reduced graphene oxide aerogel (rGOA) for the removal of diclofenac in aqueous solution. The preparation of rGOA involved facile self-assembly of graphene oxide under a reductive environment of L-ascorbic acid. Characterisation of rGOA was performed by Fourier transform infrared, scanning electron microscope, transmission electron microscopy, nitrogen adsorption-desorption, Raman spectroscopy and X-ray diffraction. The developed rGOA had a measured density of 20.39 ± 5.28 mg/cm3, specific surface area of 132.19 m2/g, cumulative pore volume of 0.5388 cm3/g and point of zero charge of 6.3. A study on the simultaneous interactions of independent factors by response surface methodology suggested dosage and initial concentration as the dominant parameters influencing the adsorption of diclofenac. The highest diclofenac adsorption capacity (596.71 mg/g) was achieved at the optimum conditions of 0.25 g/L dosage, 325 mg/L initial concentration, 200 rpm shaking speed and 30 °C temperature. The adsorption equilibrium data were best fitted to the Freundlich model with correlation coefficient (R2) varying from 0.9500 to 0.9802. The adsorption kinetic data were best correlated to the pseudo-first-order model with R2 ranging from 0.8467 to 0.9621. Thermodynamic analysis showed that the process was spontaneous (∆G = - 7.19 to - 0.48 kJ/mol) and exothermic (∆H = - 12.82 to - 2.17 kJ/mol). This research concluded that rGOA is a very promising adsorbent for the remediation of water polluted by diclofenac.
This paper deliberates the extraction, characterization and examination of potential application of soluble polysaccharides of palm kernel cake (PKC) as a prebiotic. The PKC was defatted and crude polysaccharide was obtained through water, citric acid or NaOH extraction. The physiochemical properties of the extracted polysaccharides viz. total carbohydrates, protein content, solubility rate, monosaccharides composition, structural information and thermal properties were also determined. The extracted soluble polysaccharides were further subjected to a digestibility test using artificial human gastric juice. Finally, their prebiotic potential on two probiotics, namely Lactobacillus plantarum ATCC 8014 and Lb. rhamnosus ATCC 53103 were evaluated in vitro. It was observed that PKC contained ash (5.2%), moisture (7.4%), carbohydrates (65.8%), protein (16.5%) and fat (5.1%). There were significant differences (P 95%). Protein content in SCPW, SCPCA and SCPN are 0.72, 0.40 and 0.58, respectively, and the peaks which indicated the presence of protein were observed at approximately 1640 cm-1 (amide I). FTIR spectroscopy revealed that the polysaccharides extracts were linked to β and α-glycosidic bonds and thermal analysis using differential scanning calorimeter (DSC) showed the main degradation temperature of SP is about 121 to 125 °C. The SP were found to be highly resistance (> 96%) to hydrolysis when subjected to artificial human gastric juice. The prebiotics potentials of the polysaccharides on probiotics in vitro demonstrated an increase in proliferation of Lb. plantarum ATCC 8014 and Lb. rhamnosus ATCC 53103 with decrease in the pH of the medium and producing organic acids.All the above findings strongly indicated that polysaccharides extracted from PKC, an industrial waste, have a potential to be exploited as novel prebiotics.
The main focus of this study was to obtain the optimum alkaline treatment for banana fibre and the its effect on the mechanical and chemical properties of banana fibre, its surface topography, its heat resistivity, as well as its interfacial bonding with epoxy matrix. Banana fibre was treated with sodium hydroxide (NaOH) under various treatment conditions. The treated fibres were characterised using FTIR spectroscopy. The morphology of a single fibre observed under a Digital Image Analyser indicated slight reduction in fibre diameter with increasing NaOH concentration. The Scanning Electron Microscope (SEM) results showed the deteriorating effect of alkali, which can be seen from the removal of impurities and increment in surface roughness. The mechanical analysis indicates that 6% NaOH treatment with a two-hour immersion time gave the highest tensile strength. The adhesion between single fibre and epoxy resin was analysed through the micro-droplet test. It was found that 6% NaOH treatment with a two-hour immersion yielded the highest interfacial shear stress of 3.96 MPa. The TGA analysis implies that alkaline treatment improved the thermal and heat resistivity of the fibre.
In this work, we reported the synthesis, characterization and adsorption study of two β-cyclodextrin (βCD) cross-linked polymers using aromatic linker 2,4-toluene diisocyanate (2,4-TDI) and aliphatic linker 1,6-hexamethylene diisocyanate (1,6-HDI) to form insoluble βCD-TDI and βCD-HDI. The adsorption of 2,4-dinitrophenol (DNP) on both polymers as an adsorbent was studied in batch adsorption experiments. Both polymers were well characterized using various tools that include Fourier transform infrared spectroscopy, thermogravimetric analysis, Brunauer-Emmett-Teller analysis and scanning electron microscopy, and the results obtained were compared with the native βCD. The adsorption isotherm of 2,4-DNP onto polymers was studied. It showed that the Freundlich isotherm is a better fit for βCD-TDI, while the Langmuir isotherm is a better fit for βCD-HMDI. The pseudo-second-order kinetic model represented the adsorption process for both of the polymers. The thermodynamic study showed that βCD-TDI polymer was more favourable towards 2,4-DNP when compared with βCD-HDI polymer. Under optimized conditions, both βCD polymers were successfully applied on various environmental water samples for the removal of 2,4-DNP. βCD-TDI polymer showed enhanced sorption capacity and higher removal efficiency (greater than 80%) than βCD-HDI (greater than 70%) towards 2,4-DNP. The mechanism involved was discussed, and the effects of cross-linkers on βCD open up new perspectives for the removal of toxic contaminants from a body of water.
Treated Rhizopora mucronata tannin (RMT) as a corrosion inhibitor for carbon steel and copper in oil and gas facilities was investigated. Corrosion rate of carbon-steel and copper in 3wt% NaCl solution by RMT was studied using chemical (weight loss method) and spectroscopic (FTIR) techniques at various temperatures in the ranges of 26-90°C. The weight loss data was compared to the electrochemical by the application of Faraday's law for the conversion of corrosion rate data from one system to another. The inhibitive efficiency of RMT was compared with commercial inhibitor sodium benzotriazole (BTA-S). The best concentration of RMT was 20% (w/v), increase in concentration of RMT decreased the corrosion rate and increased the inhibitive efficiency. Increase in temperature increased the corrosion rate and decreased the inhibitive efficiency but, the rate of corrosion was mild with RMT. The FTIR result shows the presence of hydroxyl group, aromatic group, esters and the substituted benzene group indicating the purity of the tannin. The trend of RMT was similar to that of BTA-S, but its inhibitive efficiency for carbon-steel was poor (6%) compared to RMT (59%). BTA-S was efficient for copper (76%) compared to RMT (74%) at 40% (w/v) and 20% (w/v) concentration respectively. RMT was efficient even at low concentration therefore, the use of RMT as a cost effective and environmentally friendly corrosion inhibiting agent for carbon steel and copper is herein proposed.
This paper investigates the effect of the ratio of ammonium nitrate (AN) on the structural, microstructural, magnetic, and alternating current (AC) conductivity properties of barium hexaferrite (BaFe12O19). The BaFe12O19 were prepared by using the salt melt method. The samples were synthesized using different powder-to-salt weight ratio variations (1:3, 1:4, 1:5, 1:6 and 1:7) of BaCO₃ + Fe₂O₃ and ammonium nitrate salt. The NH₄NO₃ was melted on a hot plate at 170 °C. A mixture of BaCO₃ and Fe₂O₃ were added into the NH₄NO₃ melt solution and stirred for several hours using a magnetic stirrer under a controlled temperature of 170 °C. The heating temperature was then increased up to 260 °C for 24 hr to produce an ash powder. The x-ray diffraction (XRD) results show the intense peak of BaFe12O19 for all the samples and the presence of a small amount of the impurity Fe₂O₃ in the samples, at a ratio of 1:5 and 1:6. From the Fourier transform infra-red (FTIR) spectra, the band appears at 542.71 cm - 1 and 432.48 cm - 1 , which corresponding to metal⁻oxygen bending and the vibration of the octahedral sites of BaFe12O19. The field emission scanning electron microscope (FESEM) images show that the grains of the samples appear to stick each other and agglomerate at different masses throughout the image with the grain size 5.26, 5.88, 6.14, 6.22, and 6.18 µm for the ratios 1:3, 1:4, 1:5, 1:6, and 1:7 respectively. From the vibrating sample magnetometer (VSM) analysis, the magnetic properties of the sample ratio at 1:3 show the highest value of coercivity Hc of 1317 Oe, a saturation magnetization Ms of 91 emu/g, and a remnant Mr of 44 emu/g, respectively. As the temperature rises, the AC conductivity is increases with an increase in frequency.
The issue of food authenticity has become a concern among religious adherents, particularly Muslims, due to the possible presence of nonhalal ingredients in foods as well as other commercial products. One of the nonhalal ingredients that commonly found in food and pharmaceutical products is gelatin which extracted from porcine source. Bovine and fish gelatin are also becoming the main commercial sources of gelatin. However, unclear information and labeling regarding the actual sources of gelatin in food and pharmaceutical products have become the main concern in halal authenticity issue since porcine consumption is prohibited for Muslims. Hence, numerous analytical methods involving chemical and chemometric analysis have been developed to identify the sources of gelatin. Chemical analysis techniques such as biochemical, chromatography, electrophoretic, and spectroscopic are usually combined with chemometric and mathematical methods such as principal component analysis, cluster, discriminant, and Fourier transform analysis for the gelatin classification. A sample result from Fourier transform infrared spectroscopy analysis, which combines Fourier transform and spectroscopic technique, is included in this paper. This paper presents an overview of chemical and chemometric methods involved in identification of different types of gelatin, which is important for halal authentication purposes.
The development of new adsorbent has rapidly increased in order to overcome the problem
of waste water treatment from heavy metal pollution. The ability of nickel (II)-ion imprinted
polymer (Ni-IIP) as an alternative adsorbent for the removal of nickel ion from aqueous has
been investigated. The Ni-IIP was prepared via bulk polymerization by using functional
monomers; methylacrylic acid (MAA) with picolinic acid as a co-monomer. Nickel ion was
used as template, AIBN as initiator and EGDMA as cross-linking agent. Non-imprinted control
polymer (NIP) was prepared in the same manner as Ni-IIP but in the absence of nickel
ion. The resultant of Ni-IIP and NIP were characterized by using Fourier Transform Infrared
(FTIR) spectroscopy and Scanning Electron Microscope (SEM). Result showed that, the adsorption
of nickel ion onto Ni-IIP increased as the adsorbent dosage increased and contact
time is prolonged. The adsorption isotherm model for Ni-IIP and NIP were fitted well with
Freundlich and Langmuir, respectively. Kinetic study for both Ni-IIP and NIP were followed
the pseudo-second order, indicates that the rate-limiting step is the surface adsorption that
involves chemisorption. Selectivity studies showed that the distribution coefficient of Ni2+
was higher compared to Zn2+, Mg2+ and Pb2+. The present work has successfully synthesized
Ni-IIP particles with good potential in recognition of Ni2+ ions in an aqueous medium.
As textile production flourishes nowadays, the amount of dyed wastewater entering the
water body has also increased. Dyes could have serious negative impacts to the environment
and also the human health, hence, they need to be removed from the water body. In this
study, layered double hydroxide (LDH) of manganese/aluminium (MnAl) was synthesised
to be used as a potential adsorbent to remove methyl orange (MO) dye due to its unique
lamellar structure which provides LDH with high anion adsorption and exchange ability.
MnAl was synthesized by using co-precipitation method and characterized by powder X-ray
diffraction (PXRD), Fourier-Transform Infrared Spectroscopy (FTIR), Inductively coupled
plasma atomic emission spectroscopy (ICP-AES) and Carbon, Hydrogen, Nitrogen, Sulphur
(CHNS) elemental analysers, and Accelerated Surface Area and Porosity Analyzer (ASAP).
Adsorption studies were conducted at different contact times and dosages of MnAl to evaluate
the performance of MnAl in removing MO from water. Kinetic and isotherm models were
tested using pseudo-first order, pseudo-second order, Langmuir isotherm and Freundlich
isotherm. MnAl LDH was found to be perfectly fitted into pseudo-second order and Langmuir
isotherm.
This study was carried out to investigate the electrical properties of YBCO sample as superconductor
and the effect of addition of Co3O4 on the superconducting properties of YBCO superconductor. The
YBCO sample was prepared by solid state reaction route. The samples were prepared by each with
weight percentage of cobalt oxide of x= 0.00, x= 0.01, x= 0.02 and x= 0.03. Electrical Conduction by
Multimeter, Fourier Transform Infrared (FTIR), Critical temperature (Tc) measurement, X-ray
Diffraction (XRD), and Scanning Electron Microscopy (SEM) were conducted for analysis.
Multimeter showed all samples were in electric conduction, FTIR showed that carbonyl compound in
the sample was removed after calcinations. Tc measurement showed that the critical temperature of
sample of x= 0.02 was increased compared to sample of x= 0.00. XRD showed all samples have
orthorhombic structure and SEM showed that the grain size was increased as increased the cobalt
addition in YBCO superconductor. Besides, the EDX also showed the composition of elements
YBCO were tally with chemicals used for pure YBCO and addition cobalt oxide into YBCO
superconductor.