Displaying publications 341 - 360 of 942 in total

Abstract:
Sort:
  1. Ng WJ, Ken KW, Kumar RV, Gunasagaran H, Chandramogan V, Lee YY
    PMID: 25435614
    BACKGROUND: Different researches on therapeutic effects of honey have been conducted in different regions; however the study on the potential antibacterial activity of Malaysian honey is still limited. In this study, antibacterial activities of different monofloral honey samples were tested against several common human pathogenic bacteria.

    MATERIALS AND METHODS: The well-diffusion method, minimum inhibitory concentrations (MIC) and minimum bactericidal concentration (MBC) techniques were employed to investigate the putative antibacterial activity of Malaysian monofloral honey from Koompassia excelsa (Becc.) Taub (Tualang), Melaleuca cajuputi Powell (Gelam) and Durio zibethinus Murr. (Durian). Honey samples were tested against Staphylococcus aureus ATCC6518 and ATCC25923, Staphylococcus epidermidis ATCC12228, Enterococcus faecium LMG16192, Enterococcus faecalis LMG16216 and ATCC29212, Escherichia coli ATCC25922, Salmonella enterica serovar Typhimurium ATCC14028 and Klebsiella pneumoniae ATCC13883.

    RESULTS: Marked variations were observed in the antibacterial activity of these honey samples. Durian honey failed to produce substantial antibacterial activity, whereas Tualang and Gelam honey showed a spectrum of antibacterial activity with their growth inhibitory effects against all of the tested bacterial species including vancomycin-resistant enterococci (VRE).

    CONCLUSION: Present findings suggested Gelam honey possesses highest antibacterial effect among the tested Malaysian honey samples.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*; Bacteria/drug effects*; Bacteria/growth & development; Bacterial Infections/microbiology*
  2. Hossain MS, Rahman NN, Balakrishnan V, Puvanesuaran VR, Sarker MZ, Kadir MO
    Int J Environ Res Public Health, 2013 Jan 31;10(2):556-67.
    PMID: 23435587 DOI: 10.3390/ijerph10020556
    The present study was undertaken to determine the bacterial agents present in various clinical solid wastes, general waste and clinical sharp waste. The waste was collected from different wards/units in a healthcare facility in Penang Island, Malaysia. The presence of bacterial agents in clinical and general waste was determined using the conventional bacteria identification methods. Several pathogenic bacteria including opportunistic bacterial agent such as Pseudomonas aeruginosa, Salmonella spp., Klebsiella pneumoniae, Serratia marcescens, Acinetobacter baumannii, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Streptococcus pyogenes were detected in clinical solid wastes. The presence of specific pathogenic bacterial strains in clinical sharp waste was determined using 16s rDNA analysis. In this study, several nosocomial pathogenic bacteria strains of Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Lysinibacillus sphaericus, Serratia marcescens, and Staphylococcus aureus were detected in clinical sharp waste. The present study suggests that waste generated from healthcare facilities should be sterilized at the point of generation in order to eliminate nosocomial infections from the general waste or either of the clinical wastes.
    Matched MeSH terms: Bacteria/genetics; Bacteria/isolation & purification*; Bacterial Infections/epidemiology*; DNA, Bacterial/genetics
  3. Liew CSL, Guad RM, Taylor-Robinson AW, Teck KS, Mandrinos S, Duin EV, et al.
    Trop Biomed, 2024 Sep 01;41(3):310-315.
    PMID: 39548785 DOI: 10.47665/tb.41.3.011
    To investigate co-infection of bacterial isolates associated with respiratory syncytial virus (RSV) in children aged less than two years who were admitted to hospital with confirmed lower respiratory tract infection (LRTI) in Kelantan, Malaysia. The demographic data, clinical history, case management, haematological as well as infectious parameters (white blood cell differential and count, plus C-reactive protein, CRP) of the patients were systematically recorded. Less than one-third of cases were RSV-positive (21.03% and 26.23% were diagnosed as acute bronchiolitis or pneumonia, respectively). Blood cultures from approximately 10% of patients demonstrated growth of Haemophilus influenzae, Staphylococcus aureus, coagulase-negative Staphylococcus, Pseudomonas stutzeri, haemolytic Streptococcus group A, and Bacillus subtilis. Further analysis indicated that children with positive bacterial growth had an insignificant predictive value of CRP (2.32-7.16 mg/dl). The total white cell counts were 2.97-7.33 x 109sup>/L despite increased lymphocyte values in the bacteria-positive blood culture. Platelet counts were also within normal limits except for a single case of H. influenzae infection (685.50 x 109sup>/L). Interestingly, 95.01% of patients were treated with antibiotics; 66.23% of RSV infection cases were administered with a combination of antibiotics and 33.77% with only a single antibiotic. The data indicate that the use of antibiotics, either singly or in combination, is not always effective in treating LRTI in infants. Alternative therapeutic regimens should be considered, especially in Asian countries that may have limited resources.
    Matched MeSH terms: Bacteria/drug effects; Bacteria/isolation & purification; Bacterial Infections/drug therapy; Bacterial Infections/microbiology
  4. Chang CY, Koh CL, Sam CK, Chan XY, Yin WF, Chan KG
    PLoS One, 2012;7(8):e44034.
    PMID: 22952864 DOI: 10.1371/journal.pone.0044034
    Growth-dependent cell-cell communication termed quorum sensing is a key regulatory system in bacteria for controlling gene expression including virulence factors. In this study five potential bacterial pathogens including Bacillus sp. W2.2, Klebsiella sp. W4.2, Pseudomonas sp. W3 and W3.1 and Serratia sp. W2.3 were isolated from diseased Tilapia fish in Malaysia, supplied by the leading global fish supplier. Proteolytic activity assays confirmed that with the exception of Klebsiella sp. W4.2, all isolates showed distinct proteolytic activity. Furthermore Bacillus sp. W2.2 and Pseudomonas sp. strains W3 and W3.1 also displayed haemolytic activity. By using high resolution liquid chromatography mass spectrometry, we revealed the presence of unusually long-chain N-(3-oxohexadecanoyl)-homoserine lactone (3-oxo-C16-HSL) from Pseudomonas sp. W3.1 and N-dodecanoyl-homoserine lactone (C12-HSL) from Serratia sp. W2.3, respectively. Interestingly, Pseudomonas sp. W3.1 also produced a wide range of Pseudomonas quinolone signalling (PQS) molecules. Pseudomonas sp. W3 did not show any quorum sensing properties but possessed quorum quenching activity that inactivated AHLs. This study is the first documentation that shows unusual long-chain AHLs production in Serratia sp. and Pseudomonas sp. isolated from diseased fish and the latter also produce a wide range of PQS molecules.
    Matched MeSH terms: Bacteria/cytology*; Bacteria/isolation & purification*; Bacteria/metabolism; Bacteria/pathogenicity
  5. Hendriksen RS, Munk P, Njage P, van Bunnik B, McNally L, Lukjancenko O, et al.
    Nat Commun, 2019 03 08;10(1):1124.
    PMID: 30850636 DOI: 10.1038/s41467-019-08853-3
    Antimicrobial resistance (AMR) is a serious threat to global public health, but obtaining representative data on AMR for healthy human populations is difficult. Here, we use metagenomic analysis of untreated sewage to characterize the bacterial resistome from 79 sites in 60 countries. We find systematic differences in abundance and diversity of AMR genes between Europe/North-America/Oceania and Africa/Asia/South-America. Antimicrobial use data and bacterial taxonomy only explains a minor part of the AMR variation that we observe. We find no evidence for cross-selection between antimicrobial classes, or for effect of air travel between sites. However, AMR gene abundance strongly correlates with socio-economic, health and environmental factors, which we use to predict AMR gene abundances in all countries in the world. Our findings suggest that global AMR gene diversity and abundance vary by region, and that improving sanitation and health could potentially limit the global burden of AMR. We propose metagenomic analysis of sewage as an ethically acceptable and economically feasible approach for continuous global surveillance and prediction of AMR.
    Matched MeSH terms: Bacteria/classification; Bacteria/drug effects*; Bacteria/genetics; Bacteria/isolation & purification; Genes, Bacterial*; Drug Resistance, Multiple, Bacterial/genetics*
  6. Alshawsh MA, Abdulla MA, Ismail S, Amin ZA, Qader SW, Hadi HA, et al.
    Molecules, 2012;17(5):5385-95.
    PMID: 22569417 DOI: 10.3390/molecules17055385
    Orthosiphon stamineus is considered an important traditional folk medicine. In this study ethanol and aqueous extracts of O. stamineus were evaluated in vitro for their antioxidant, antimicrobial as well as for their immunomodulatory properties on human peripheral blood mononuclear cells (PBMCs). The DPPH radical scavenging method was used for the determination of antioxidant activity, while the antibacterial efficacy was investigated by both disc diffusion method and Minimum Inhibitory Concentration (MIC) against four bacterial strains (Gram-positive and Gram-negative). Furthermore, the immunomodulatory potential of the extracts was investigated through the MTT assay. Aqueous extract of O. stamineus exhibited significant free radical scavenging activity with IC₅₀ 50 9.6 µg/mL, whereas the IC₅₀ for the ethanol extract was 21.4 µg/mL. The best antimicrobial activity was shown by the aqueous extract of O. stamineus against Staphylococcus aureus, with inhibition zone of 10.5 mm and MIC value 1.56 mg/mL. Moreover, the results observed from the MTT assay showed that both plant extracts stimulated the PBMCs proliferation in vitro in a concentration-dependent manner, but the aqueous extract has remarkable activity against PBMCs. These findings indicate that O. stamineus showed high antioxidant activity and may be considered as an immunomodulatory agent.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects; Gram-Negative Bacteria/growth & development; Gram-Positive Bacteria/drug effects; Gram-Positive Bacteria/growth & development
  7. Abudula T, Gauthaman K, Mostafavi A, Alshahrie A, Salah N, Morganti P, et al.
    Sci Rep, 2020 11 24;10(1):20428.
    PMID: 33235239 DOI: 10.1038/s41598-020-76971-w
    Non-healing wounds have placed an enormous stress on both patients and healthcare systems worldwide. Severe complications induced by these wounds can lead to limb amputation or even death and urgently require more effective treatments. Electrospun scaffolds have great potential for improving wound healing treatments by providing controlled drug delivery. Previously, we developed fibrous scaffolds from complex carbohydrate polymers [i.e. chitin-lignin (CL) gels]. However, their application was limited by solubility and undesirable burst drug release. Here, a coaxial electrospinning is applied to encapsulate the CL gels with polycaprolactone (PCL). Presence of a PCL shell layer thus provides longer shelf-life for the CL gels in a wet environment and sustainable drug release. Antibiotics loaded into core-shell fibrous platform effectively inhibit both gram-positive and -negative bacteria without inducting observable cytotoxicity. Therefore, PCL coated CL fibrous gel platforms appear to be good candidates for controlled drug release based wound dressing applications.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects; Gram-Negative Bacteria/growth & development; Gram-Positive Bacteria/drug effects; Gram-Positive Bacteria/growth & development
  8. Narender M, Jaswanth S B, Umasankar K, Malathi J, Raghuram Reddy A, Umadevi KR, et al.
    Bioorg Med Chem Lett, 2016 Feb 01;26(3):836-840.
    PMID: 26755393 DOI: 10.1016/j.bmcl.2015.12.083
    Development of multidrug resistant (MDR) and extensively drug resistant (XDR) tuberculosis (TB) has been considered as major health burden, globally. In order to develop novel, potential molecules against drug resistant TB, twenty two (22) new 3-substituted-7-benzyl-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidin-4(3H)-one (6a-k) and 3-substituted-7-benzyl-2-methyl-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidin-4(3H)-one (7a-k) derivatives were designed and synthesized by using appropriate synthetic protocols. Pantothenate synthetase (PS) was considered as the target for the molecular docking studies and evaluated the binding pattern at active site, as PS plays a significant role in the biosynthesis of pantothenate in Mycobacterium tuberculosis (MTB). The preliminary in vitro antibacterial screening of test compounds was carried out against two strains of Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli and Klebsiella pneumoniae) bacteria. The antimycobacterial screening was performed against MTB H37Rv and an isoniazid-resistant clinical isolate of MTB. The compounds 6b, 6c, 6d, 6k, 7b, 7c, 7d and 7k exhibited promising antibacterial activity MIC in the range of 15-73 μM against all bacterial strains used and compounds 6d and 7b showed antimycobacterial activity (IC50 <340 μM in LRP assay) and (MIC <9 μM in broth microdilution method).
    Matched MeSH terms: Gram-Negative Bacteria/drug effects; Gram-Negative Bacteria/metabolism; Gram-Positive Bacteria/drug effects; Gram-Positive Bacteria/metabolism
  9. Baharudin MMA, Ngalimat MS, Mohd Shariff F, Balia Yusof ZN, Karim M, Baharum SN, et al.
    PLoS One, 2021;16(5):e0251514.
    PMID: 33974665 DOI: 10.1371/journal.pone.0251514
    Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) have reached epidemic proportions globally. Therefore, there is an urgent need for a continuous supply of antibiotics to combat the problem. In this study, bacteria initially identified as species belonging to the Bacillus amyloliquefaciens operational group were re-identified based on the housekeeping gene, gyrB. Cell-free supernatants (CFS) from the strains were used for antimicrobial tests using the agar well diffusion assay against MRSA and various types of pathogenic bacteria. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and physicochemical characteristics of the CFS were determined. Based on gyrB sequence analysis, five strains (PD9, B7, PU1, BP1 and L9) were identified as Bacillus velezensis. The CFS of all B. velezensis strains showed broad inhibitory activities against Gram-negative and -positive as well as MRSA strains. Strain PD9 against MRSA ATCC 33742 was chosen for further analysis as it showed the biggest zone of inhibition (21.0 ± 0.4 mm). The MIC and MBC values obtained were 125 μl/ml. The crude antimicrobial extract showed bactericidal activity and was stable at various temperatures (40-80°C), pH (4-12), surfactants (Tween 20, Tween 80, SDS and Triton X-100) and metal ions (MgCI2, NaCI2, ZnNO3 and CuSO4) when tested. However, the crude extract was not stable when treated with proteinase K. All these properties resembled the characteristics of peptides. The antimicrobial compound from the selected strain was purified by using solvent extraction method and silica gel column chromatography. The purified compound was subjected to High Performance Liquid Chromatography which resulted in a single peak of the anti-MRSA compound being detected. The molecular weight of the anti-MRSA compound was determined by using SDS-PAGE and zymogram. The size of the purified antimicrobial peptide was approximately ~ 5 kDa. The antimicrobial peptide produced from B. velezensis strain PD9 is a promising alternative to combat the spread of MRSA infections in the future.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects; Gram-Negative Bacteria/growth & development; Gram-Positive Bacteria/drug effects; Gram-Positive Bacteria/growth & development
  10. Vijayarathna S, Zakaria Z, Chen Y, Latha LY, Kanwar JR, Sasidharan S
    Molecules, 2012 Apr 26;17(5):4860-77.
    PMID: 22538489 DOI: 10.3390/molecules17054860
    The urgent need to treat multi-drug resistant pathogenic microorganisms in chronically infected patients has given rise to the development of new antimicrobials from natural resources. We have tested Elaeis guineensis Jacq (Arecaceae) methanol extract against a variety of bacterial, fungal and yeast strains associated with infections. Our studies have demonstrated that E. guineensis exhibits excellent antimicrobial activity in vitro and in vivo against the bacterial and fungal strains tested. A marked inhibitory effect of the E. guineensis extracts was observed against C. albicans whereby E. guineensis extract at ½, 1, or 2 times the MIC significantly inhibited C. albicans growth with a noticeable drop in optical density (OD) of the bacterial culture. This finding confirmed the anticandidal activity of the extract on C. albicans. Imaging using scanning (SEM) and transmission (TEM) electron microscopy was done to determine the major alterations in the microstructure of the extract-treated C. albicans. The main abnormalities noted via SEM and TEM studies were the alteration in morphology of the yeast cells. In vivo antimicrobial activity was studies in mice that had been inoculated with C. albicans and exhibited good anticandidal activity. The authors conclude that the extract may be used as a candidate for the development of anticandidal agent.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects; Gram-Negative Bacteria/growth & development; Gram-Positive Bacteria/drug effects; Gram-Positive Bacteria/growth & development
  11. Panhwar QA, Naher UA, Shamshuddin J, Jusop S, Othman R, Latif MA, et al.
    PLoS One, 2014;9(10):e97241.
    PMID: 25285745 DOI: 10.1371/journal.pone.0097241
    A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia). The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmol(c) kg(-1), respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB) including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis). The isolated strains were capable of producing indoleacetic acid (IAA) and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65%) existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM) was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils.
    Matched MeSH terms: Bacteria/isolation & purification; Bacteria/metabolism*
  12. Peto L, Nadjm B, Horby P, Ngan TT, van Doorn R, Van Kinh N, et al.
    Trans R Soc Trop Med Hyg, 2014 Jun;108(6):326-37.
    PMID: 24781376 DOI: 10.1093/trstmh/tru058
    Community-acquired pneumonia (CAP) is a major cause of adult mortality in Asia. Appropriate empirical treatment depends on knowledge of the pathogens commonly responsible. However, assessing the aetiological significance of identified organisms is often difficult, particularly with sputum isolates that might represent contamination with oropharyngeal flora.
    Matched MeSH terms: Bacteria/classification; Bacteria/isolation & purification; Pneumonia, Bacterial/diagnosis; Pneumonia, Bacterial/microbiology*; Pneumonia, Bacterial/epidemiology*
  13. Abioye OP, Agamuthu P, Abdul Aziz AR
    Biodegradation, 2012 Apr;23(2):277-86.
    PMID: 21870160 DOI: 10.1007/s10532-011-9506-9
    Soil contamination by hydrocarbons, especially by used lubricating oil, is a growing problem in developing countries, which poses a serious threat to the environment. Phytoremediation of these contaminated soils offers environmental friendly and a cost effective method for their remediation. Hibiscus cannabinus was studied for the remediation of soil contaminated with 2.5 and 1% used lubricating oil and treated with organic wastes [banana skin (BS), brewery spent grain (BSG) and spent mushroom compost (SMC)] for a period of 90 days under natural conditions. Loss of 86.4 and 91.8% used lubricating oil was recorded in soil contaminated with 2.5 and 1% oil and treated with organic wastes respectively at the end of 90 days. However, 52.5 and 58.9% oil loss was recorded in unamended soil contaminated with 2.5 and 1% oil, respectively. The plant did not accumulate hydrocarbon from the soil but shows appreciable accumulation of Fe and Zn in the root and stem of H. cannabinus at the end of the experiment. The first order kinetic rate of uptake of Fe and Zn in H. cannabinus was higher in organic wastes amendment treatments compared to the unamended treatments, which are extremely low. The results of this study suggest that H. cannabinus has a high potential for remediation of hydrocarbon and heavy metal contaminated soil.
    Matched MeSH terms: Bacteria/growth & development; Bacteria/metabolism
  14. Lam MK, Lee KT, Mohamed AR
    Biotechnol Adv, 2010 Jul-Aug;28(4):500-18.
    PMID: 20362044 DOI: 10.1016/j.biotechadv.2010.03.002
    In the last few years, biodiesel has emerged as one of the most potential renewable energy to replace current petrol-derived diesel. It is a renewable, biodegradable and non-toxic fuel which can be easily produced through transesterification reaction. However, current commercial usage of refined vegetable oils for biodiesel production is impractical and uneconomical due to high feedstock cost and priority as food resources. Low-grade oil, typically waste cooking oil can be a better alternative; however, the high free fatty acids (FFA) content in waste cooking oil has become the main drawback for this potential feedstock. Therefore, this review paper is aimed to give an overview on the current status of biodiesel production and the potential of waste cooking oil as an alternative feedstock. Advantages and limitations of using homogeneous, heterogeneous and enzymatic transesterification on oil with high FFA (mostly waste cooking oil) are discussed in detail. It was found that using heterogeneous acid catalyst and enzyme are the best option to produce biodiesel from oil with high FFA as compared to the current commercial homogeneous base-catalyzed process. However, these heterogeneous acid and enzyme catalyze system still suffers from serious mass transfer limitation problems and therefore are not favorable for industrial application. Nevertheless, towards the end of this review paper, a few latest technological developments that have the potential to overcome the mass transfer limitation problem such as oscillatory flow reactor (OFR), ultrasonication, microwave reactor and co-solvent are reviewed. With proper research focus and development, waste cooking oil can indeed become the next ideal feedstock for biodiesel.
    Matched MeSH terms: Bacteria/metabolism; Bacteria/chemistry; Bacterial Proteins/metabolism; Bacterial Proteins/chemistry
  15. Lalitha P, Siti Suraiya MN, Lim KL, Lee SY, Nur Haslindawaty AR, Chan YY, et al.
    J Microbiol Methods, 2008 Sep;75(1):142-4.
    PMID: 18579241 DOI: 10.1016/j.mimet.2008.05.001
    A PCR assay has been developed based on a lolB (hemM) gene, which was found to be highly conserved among the Vibrio cholerae species but non-conserved among the other enteric bacteria. The lolB PCR detected all O1, O139 and non-O1/non-O139 serogroup and biotypes of V. cholerae. The analytical specificity of this assay was 100% while the analytical sensitivity was 10 pg/microL and 10(3) CFU/mL at DNA and bacterial level respectively. The diagnostic sensitivity and specificity was 98.5% and 100% respectively.
    Matched MeSH terms: Gram-Negative Bacteria/genetics; Gram-Negative Bacteria/isolation & purification; Gram-Negative Bacterial Infections/microbiology
  16. Kamal N, Sabaratnam V, Abdullah N, Ho AS, Teo SH, Lee HB
    Antonie Van Leeuwenhoek, 2009 Feb;95(2):179-88.
    PMID: 19125347 DOI: 10.1007/s10482-008-9301-8
    Photodynamic therapy (PDT) is a promising cancer treatment which involves activation of a photosensitizing drug with light to produce reactive oxygen species that kill tumors without causing damage to unirradiated normal tissues. To date, only Photofrin, Foscan and Levulan have been approved for clinical treatment of cancer. Tropical habitats such as those found in Malaysia are attractive sources of new therapeutic compounds as tremendous chemical diversity is found in a large number of plants, animals, marine- and micro-organisms. In our screening program for novel photosensitizers from nature, colorful strains of fungi (from Aspergillus and Penicillium genus) and bacteria (including actinomycetes and photosynthetic bacteria) were collected from various habitats in Peninsular Malaysia, such as coastal soil, peat soil, marine sponges and wastewater ponds. Methanolic extracts from a total of 85 different species were evaluated with a short-term cell viability assay for photo-cytotoxicity, where a promyelocytic leukemia cell-line, HL60 incubated with 20 microg/ml of extracts was irradiated with 9.6 J/cm(2) of a broad spectrum light. Two of these extracts, one from Rhodobacter sphaeroides (PBUM003) and one from Rhodopseudomonas palustris (PBUM001) showed moderate to strong photo-cytotoxicity. Subsequent bioassay guided isolation of the PBUM001 extract yielded known photosensitisers that are based on bacteriochlorophyll-a by comparing their molecular weight data, HPLC profiles and UV-vis absorption spectra with literature values, thereby demonstrating the validity of our screening approach.
    Matched MeSH terms: Bacteria/isolation & purification; Bacteria/chemistry*
  17. Sasidharan S, Zuraini Z, Yoga Latha L, Sangetha S, Suryani S
    Foodborne Pathog Dis, 2008 Jun;5(3):303-9.
    PMID: 18767977 DOI: 10.1089/fpd.2007.0078
    Consecutive chloroform, ethanol, and ethyl acetate partitions of extracts from winged bean [Psophocarpus tetragonolobus (L.) DC] root, stem, leaf, and pod extracts were tested for their antimicrobial activity against 19 microbial species, including 11 bacterial pathogens, four yeasts, and four molds using the disk diffusion assay technique. The pod extract was found to be most effective against all of the tested organisms, followed by the stem, root, and leaf extracts, and the ethanol fraction showed the most significant (p < 0.05) antimicrobial activity against all of the tests among three soluble fractions of extract, followed by the ethyl acetate and chloroform fractions. The minimum inhibitory concentrations (MICs) of extracts determined by the broth dilution method ranged from 1.25 to 10.0 mg/mL. The MIC of ethanol fraction of pod extracts was the lowest by comparison with the other two extracts. The MIC for fungi was at or below 2.5 mg/mL and for bacteria was at or above 2.5 mg/mL.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*; Bacteria/drug effects*; Bacteria/growth & development
  18. Banerjee S, Devaraja TN, Shariff M, Yusoff FM
    J Fish Dis, 2007 Jul;30(7):383-9.
    PMID: 17584435
    Use of antibiotics for the control of bacterial diseases in shrimp culture has caused several adverse impacts to the industry. This has resulted in the search for alternative environment friendly approaches to overcome bacterial infections. This study was conducted to investigate the use of beneficial bacteria as an alternative to antibiotics. Ten pathogenic bacterial species isolated from shrimp, Penaeus monodon, and Artemia cysts were tested for susceptibility to indigenous marine Bacillus subtilis AB65, Bacillus pumilus AB58, Bacillus licheniformis AB69 and compared with oxytetracycline, chloramphenicol, gentamicin and bacitracin, which are common antibiotics used in Asian aquaculture. The Bacillus spp. were isolated from the local marine environment for bioremediation use in shrimp hatcheries and were proven to reduce total ammonium nitrogen. The pathogenic bacterial isolates were 90% susceptible to B. subtilis AB65, 70% susceptible to B. pumilus AB58 and B. licheniformis AB69 and 100% susceptible to oxytetracycline, chloramphenicol and gentamicin but only 40% to bacitracin. Two representative isolates of the vibrio group, Vibrio alginolyticus VaM11 and Vibrio parahaemolyticus VpM1, when tested for competitive exclusion by a common broth method using the marine Bacillus spp., showed decreased viable counts from 10(8) to 10(2) cfu mL(-1). The results suggest that the action of the marine bacteria appears to be significant in protecting the host shrimp against pathogenic bacteria. In addition to the alternative use of antibiotics, the selected marine bacteria had additional bioremediation properties of reducing ammonia.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology; Anti-Bacterial Agents/therapeutic use*; Bacteria/drug effects*; Bacteria/isolation & purification
  19. Rosman NH, Nor Anuar A, Othman I, Harun H, Sulong Abdul Razak MZ, Elias SH, et al.
    Bioresour Technol, 2013 Feb;129:620-3.
    PMID: 23317554 DOI: 10.1016/j.biortech.2012.12.113
    Aerobic granular sludge (AGS) was successfully cultivated at 27±1 °C and pH 7.0±1 during the treatment of rubber wastewater using a sequential batch reactor system mode with complete cycle time of 3 h. Results showed aerobic granular sludge had an excellent settling ability and exhibited exceptional performance in the organics and nutrients removal from rubber wastewater. Regular, dense and fast settling granule (average diameter, 1.5 mm; settling velocity, 33 m h(-1); and sludge volume index, 22.3 mL g(-1)) were developed in a single reactor. In addition, 96.5% COD removal efficiency was observed in the system at the end of the granulation period, while its ammonia and total nitrogen removal efficiencies were up to 94.7% and 89.4%, respectively. The study demonstrated the capabilities of AGS development in a single, high and slender column type-bioreactor for the treatment of rubber wastewater.
    Matched MeSH terms: Bacteria, Aerobic/isolation & purification; Bacteria, Aerobic/physiology*
  20. Dua K, Sheshala R, Al-Waeli HA, Gupta G, Chellappan DK
    Recent Pat Drug Deliv Formul, 2015;9(3):257-61.
    PMID: 26051152
    Natural products like plants and its components have been in use for treatment and cure of diseases all around the globe from ancient times much before the discovery of the current modern drugs. These substances from the nature are well known to contain components which have therapeutic properties and can also behave as precursors for the synthesis of potential drugs. The beneficial results from herbal drugs are well reported where their popularity in usage has increased across the globe. Subsequently developing countries are now recognizing the many positive advantages from their use which has engaged the expansion of R & D from herbal research. The flow on effect from this expansion has increased the awareness to develop new herbal products and the processes, throughout the entire world. Mouth washes and mouth rinses which have plant oils, plant components or extracts have generated particular attention. High prevalence of gingival inflammation and periodontal diseases, suggests majority of the patients practice inadequate plaque control. Of the currently available mouthwashes in the market, Chlorhexidine gluconate (CHX) has been investigated on a larger scale with much detail. CHX is associated with side effects like staining of teeth when used daily as well as the bitter taste of the mouthwash which leads to patient incompliance. The present research encompasses the antibacterial activity of extemporaneously prepared herbal mouthwash using natural herbs and therefore allows for the potential commercialization with in the herbal and pharmaceutical industries. Also, the present research article reviewed details of various existing patents of herbal mouthwashes which shows the trend of existing market and significance of emerging mouthwashes in both pharmaceutical and herbal industries. The antimicrobial activity of prepared mouthwashes was found to be effective against various strains of bacteria. It also suggests that the prepared herbal mouthwashes may provide an alternative to those containing chemical entities, with enhanced antimicrobial properties and better patient compliance.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*; Bacteria/drug effects*; Bacteria/growth & development
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links