Displaying publications 301 - 320 of 1298 in total

Abstract:
Sort:
  1. Sangetha S, Zuraini Z, Suryani S, Sasidharan S
    Micron, 2009 Jun;40(4):439-43.
    PMID: 19261482 DOI: 10.1016/j.micron.2009.01.003
    The inhibitory effect of Cassia spectabilis methanol leaf extract was evaluated against biofilm forming Candida albicans, which was sensitive to 6.25 mg/ml concentration of the extract. Transmission (TEM) and scanning electron microscope (SEM) observations were used to study the anticandidal activity and prevention of biofilm formation by the C. spectabilis extract. SEM analysis further revealed reduction in C. albicans biofilm in response to the extract. The main abnormalities noted via TEM study was the alterations in morphology and complete collapse of the yeast cells after 36 h of exposure to the extract. The significant antifungal activity shown by this methanol extract of C. spectabilis suggests its potential against infections caused by C. albicans.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  2. Muniandy SV, Stanslas J
    Comput Med Imaging Graph, 2008 Oct;32(7):631-7.
    PMID: 18707844 DOI: 10.1016/j.compmedimag.2008.07.003
    Chromatin morphologies in human breast cancer cells treated with an anti-cancer agent are analyzed at their early stage of programmed cell death or apoptosis. The gray-level images of nuclear chromatin are modelled as random fields. We used two-dimensional isotropic generalized Cauchy field to characterize local self-similarity and global long-range dependence behaviors in the image spatial data. Generalized Cauchy field allows the description of fractal behavior inferred from fractal dimension and the long-range dependence inferred from correlation exponent to be carried out independently. We demonstrated the usefulness of locally self-similar random fields with long-range dependence for modelling chromatin condensation.
    Matched MeSH terms: Microscopy, Electron, Transmission/methods
  3. Masrudin SS, Ghafar NA, Saidi M, Aminuddin BS, Rahmat A, Ruszymah BH, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:109-10.
    PMID: 19025009
    The present work was to determine the development and re-epithelization of bilayered corneal construct (BCC) in vitro and in vivo using scanning electron microscopy (SEM). The in vitro BCC was transplanted to the rabbit's eye and after 90 days the BCC was harvested and analyzed. The corneas were processed for morphology studies. The result indicates that the BICC that was transplanted for 90 days showed good development and re-epithelization of epithelial layer similar to the normal cornea.
    Matched MeSH terms: Microscopy, Electron, Scanning*
  4. Jensen K, Caira JN
    Folia Parasitol., 2006 Sep;53(3):189-207.
    PMID: 17120499
    As part of a metazoan parasite survey of elasmobranchs from Malaysian Borneo, specimens of Rhoptrobothrium Shipley et Hornell, 1906 were collected from the eagle rays Aetomylaeus maculatus (Gray) and Aetomylaeus niehofii (Bloch et Schneider). The type species is redescribed from its type host, and a neotype specimen is designated. In addition, three new species of Rhoptrobothrium are described: R. chongi sp. n., R. gambangi sp. n. and R. limae sp. n. Rhoptrobothrium myliobatidis conspicuously differs from the three new species in its lack of a secondary areola; R. limae is distinguished from R. chongi and R. gambangi based on its greater total length; R. chongi possesses conspicuously stalked remi, while R. gambangi possesses short remi, often folded anteriorly. Rhoptrobothrium is somewhat unusual among tetraphyllideans in its possession of a "metascolex," a character it shares with other taxa in the Thysanocephalinae (i.e., Myzocephalus Shipley et Hornell, 1906, Myzophyllobothrium Shipley et Hornell, 1906 and Thysanocephalum Linton, 1889). The morphology of the "metascolex" of Rhoptrobothrium is investigated and new terminology is suggested to standardise the names given to structures constituting a metascolex. As a result, Rhoptrobothrium is considered to possess cephalic peduncle extensions, termed remi. In Rhoptrobothrium, each remus bears, at its distal end, a primary areola, and, in the case of the three new species, also a secondary areola proximal to the primary areola. Myzocephalus and Myzophyllobothrium are tentatively considered to possess remi; the configuration of the "metascolex" of Thysanocephalum, however, is not considered homologous to the condition in the other three genera currently placed in the Thysanocephalinae.
    Matched MeSH terms: Microscopy, Electron, Scanning/methods
  5. Kapitonova MY, Othman M
    Malays J Pathol, 2004 Dec;26(2):73-87.
    PMID: 16329559
    OBJECTIVE: To evaluate the range of activation changes of polymorphonuclear leukocytes (PMN) and the ratio of apoptosis and necrosis in synovial effusions of patients with various arthropathies, and to reveal possible correlations with clinical variants of joint inflammation.
    METHODS: Synovial effusions were aspirated from the knee joints of patients with rheumatoid arthritis (RA, 28 cases), and seronegative spondyloarthritides (SSA): Reiter's disease (RD, 9 cases), peripheral form of the ankylosing spondyloarthritis (6 cases) and psoriatic arthritis (6 cases); and primary osteoarthritis (OA, 9 cases). Cytospin preparations were processed for transmission electron microscopy and assessed for the incidence of apoptosis, necrosis, and cytophagocytic cells (CPC) in the synovial fluid (SF). The range of activation changes of the neutrophil granulocytes, the dominating cell population in the arthritic SF, was evaluated.
    RESULTS: In all arthropathies under investigation most of the synovial effusion cells had intact ultrastructure with a certain amount of apoptotic cells dominating over the cells with signs of necrosis, and a few CPC. The highest rate of apoptosis was discovered in the synovial effusions of patients with RA, the lowest in those with OA, while the rate of CPC among the inflammatory joint diseases was the lowest in RA. In RA the current disease activity correlated with the incidence of apoptotic cells and CPC, while the clinical stage was related only to the CPC rate. These data suggest that in RA, despite exposure to the anti-apoptotic signals, apoptosis of the synovial effusion PMN is maintained at a significantly higher level than in non-rheumatoid arthropathies, both inflammatory (SSA) and degenerative (OA), providing elimination of the neutrophils accumulating in the joint cavity and thus stimulating resolution of the joint inflammation.
    Matched MeSH terms: Microscopy, Electron, Transmission/methods
  6. Ramimoghadam D, Hussein MZ, Taufiq-Yap YH
    Int J Mol Sci, 2012;13(10):13275-93.
    PMID: 23202952 DOI: 10.3390/ijms131013275
    ZnO nanostructures were synthesized by hydrothermal method using different molar ratios of cetyltrimethylammonium bromide (CTAB) and Sodium dodecyl sulfate (SDS) as structure directing agents. The effect of surfactants on the morphology of the ZnO crystals was investigated by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) techniques. The results indicate that the mixture of cationic-anionic surfactants can significantly modify the shape and size of ZnO particles. Various structures such as flakes, sheets, rods, spheres, flowers and triangular-like particles sized from micro to nano were obtained. In order to examine the possible changes in other properties of ZnO, characterizations like powder X-ray diffraction (PXRD), thermogravimetric and differential thermogravimetric analysis (TGA-DTG), FTIR, surface area and porosity and UV-visible spectroscopy analysis were also studied and discussed.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  7. Norhayati MM, Mazlyzam AL, Asmah R, Fuzina H, Aminuddin BS, Ruszymah BH, et al.
    Med J Malaysia, 2004 May;59 Suppl B:184-5.
    PMID: 15468879
    Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) evaluation were carried out in the in vivo skin construct using fibrin as biomaterial. To investigate its progressive remodeling, nude mice were grafted and the Extracellular Matrix (ECM) components were studied at four and eight weeks post-grafting. It was discovered that by 4 weeks of remodeling the skin construct acquired its native structure.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  8. Pohchi A, Suzina AH, Samsudin AR, Al-Salihi KA
    Med J Malaysia, 2004 May;59 Suppl B:151-2.
    PMID: 15468863
    This in vivo study revealed that porous hydroxyapatite (PHA) and dense hydroxyapatite (DHA) are good implant materials that can accelerate bone healing and resorbed in acceptable time. But there were differences in the mechanism of the resorption of DHA and PHA due to variability in the physical properties and osteogenicity.
    Matched MeSH terms: Microscopy, Electron, Scanning*
  9. Mazlyzam AL, Aminuddin BS, Lokman BS, Isa MR, Fuzina H, Fauziah O, et al.
    Med J Malaysia, 2004 May;59 Suppl B:39-40.
    PMID: 15468808
    Our objective is to determine the quality of tissue engineered human skin via immunostaining, RT-PCR and electron microscopy (SEM and TEM). Culture-expanded human keratinocytes and fibroblasts were used to construct bilayer tissue-engineered skin. The in vitro skin construct was cultured for 5 days and implanted on the dorsum of athymic mice for 30 days. Immunostaining of the in vivo skin construct appeared positive for monoclonal mouse anti-human cytokeratin, anti-human involucrin and anti-human collagen type I. RT-PCR analysis revealed loss of the expression for keratin type 1, 10 and 5 and re-expression of keratin type 14, the marker for basal keratinocytes cells in normal skin. SEM showed fibroblasts proliferating in the 5 days in vitro skin. TEM of the in vivo skin construct showed an active fibrocyte cell secreting dense collagen fibrils. We have successfully constructed bilayer tissue engineered human skin that has similar features to normal human skin.
    Matched MeSH terms: Microscopy, Electron; Microscopy, Electron, Scanning
  10. Khoo CC, Tan KH
    Microsc Res Tech, 2005 Aug 1;67(5):219-26.
    PMID: 16170821 DOI: 10.1002/jemt.20199
    Sexually mature males of Bactrocera papayae are strongly attracted to and consume methyl eugenol (ME). Upon consumption, ME is biotransformed to two phenylpropanoids, 2-allyl-4,5-dimethoxyphenol (DMP) and (E)-coniferyl alcohol (CF), that are transported in the hemolymph, sequestered and stored in the rectal glands, and subsequently released as sex and aggregation pheromones during courtship. To date, very little work on the ultrastructure and anatomy of the rectal gland has been done, and the accumulation of phenylpropanoids in the rectal glands of males has not been observed visually. Our objectives are to describe the anatomy and fine structures of the rectal glands of males and females and to observe the accumulation of autofluorescent compounds in the rectal glands of males. The rectal glands of males and females have four rectal papillae with each papilla attached to a rectal pad. The rectal pads protrude from the rectal gland as the only surfaces of the gland that are not surrounded by muscles. The rectal papillae of ME-fed males had oil droplets and autofluorescent compounds that were absent from those of ME-deprived males. The autofluorescent compounds accumulated in the rectal sac, which is an evagination that is not found in rectal glands of females. The accumulation of these compounds increased with time and reached maximum at a day post-ME feeding and decreased thereafter. This trend is similar to the accumulation pattern of phenylpropanoids, CF and DMP in the rectal gland.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  11. Claveria FG, Cruz MJ
    Parasitol Int, 2000 Jan;48(3):243-7.
    PMID: 11227764
    Ultrastructural studies of sarcocysts obtained from Philippine water buffaloes revealed the presence of the commonly reported macroscopic species, Sarcocystis fusiformis, and the microscopic species Sarcocystis levinei (Dissanaike A, Kan S. Studies on Sarcocystis in Malaysia. I: Sarcocystis levinei n.sp. from the water buffalo Bubalus bubalis. Z Parasitenkd 1978;55:127-38), (Huong L, Dubey J, Uggla A. Redescription of Sarcocystis levinei Dissanaike and Kan, 1978 (Protozoa: Sarcocystidae) of the water buffalo (Bubalus bubalis). J Parasitol 1997;83:1148-52). The globular to oval microscopic cysts commonly observed in the muscles of the diaphragm and neck exhibit compartmentalized arrangement of zoites with septal partitions and measure 13-48 microns in diameter. The parasitophorous vacuolar membrane of sarcocyst bears minute and hair-like villar protrusions measuring 2.3-2.75 microns long emanating at certain distances from the primary cyst wall and lack microfilaments. Villar protrusions have expanded to dome-shaped base measuring 0.33-1.6 microns long by 0.22-1.0 micron wide, and intermediate and tapering distal segments bent approximately 90 degrees and run parallel to the cyst surface. The distal segments at some areas join to form conical tufts. The primary cyst wall bears numerous prominent undulations that are arranged in small clusters. The ground substance is 0.42-0.57 micron thick. This paper documents the first report of S. levinei in Philippine water buffaloes possessing the type 7 cyst wall.
    Matched MeSH terms: Microscopy, Electron/veterinary
  12. Radakisnin R, Abdul Majid MS, Jamir MRM, Jawaid M, Sultan MTH, Mat Tahir MF
    Materials (Basel), 2020 Sep 17;13(18).
    PMID: 32957438 DOI: 10.3390/ma13184125
    The purpose of the study is to investigate the utilisation of Napier fiber (Pennisetum purpureum) as a source for the fabrication of cellulose nanofibers (CNF). In this study, cellulose nanofibers (CNF) from Napier fiber were isolated via ball-milling assisted by acid hydrolysis. Acid hydrolysis with different molarities (1.0, 3.8 and 5.6 M) was performed efficiently facilitate cellulose fiber size reduction. The resulting CNFs were characterised through Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), particle size analyser (PSA), field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The FTIR results demonstrated that there were no obvious changes observed between the spectra of the CNFs with different molarities of acid hydrolysis. With 5.6 M acid hydrolysis, the XRD analysis displayed the highest degree of CNF crystallinity at 70.67%. In a thermal analysis by TGA and DTG, cellulose nanofiber with 5.6 M acid hydrolysis tended to produce cellulose nanofibers with higher thermal stability. As evidenced by the structural morphologies, a fibrous network nanostructure was obtained under TEM and AFM analysis, while a compact structure was observed under FESEM analysis. In conclusion, the isolated CNFs from Napier-derived cellulose are expected to yield potential to be used as a suitable source for nanocomposite production in various applications, including pharmaceutical, food packaging and biomedical fields.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  13. Mengting Z, Kurniawan TA, Fei S, Ouyang T, Othman MHD, Rezakazemi M, et al.
    Environ Pollut, 2019 Dec;255(Pt 1):113182.
    PMID: 31541840 DOI: 10.1016/j.envpol.2019.113182
    Methylene blue (MB) is a dye pollutant commonly present in textile wastewater. We investigate and critically evaluate the applicability of BaTiO3/GO composite for photodegradation of MB in synthetic wastewater under UV-vis irradiation. To enhance its performance, the BaTiO3/GO composite is varied based on the BaTiO3 weight. To compare and evaluate any changes in their morphologies and crystalline structures before and after treatment, BET (Brunauer-Emmett-Teller), XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), SEM (scanning electron microscopy) and TEM (transmission electron microscopy) tests are conducted, while the effects of reaction time, pH, dose of photocatalyst and initial MB concentration on its photodegradation by the composite are also investigated under identical conditions. The degradation pathways and removal mechanisms of MB by the BaTiO3/GO are elaborated. It is evident from this study that the BaTiO3/GO composite is promising for MB photodegradation through ·OH. Under optimized conditions (0.5 g/L of dose, pH 9.0, and 5 mg/L of MB concentration), the composite with 1:2 dose ratio of BaTiO3/GO has the highest MB degradation rate (95%) after 3 h of UV vis irradiation. However, its treated effluents still could not comply with the discharge standard limit of less than 0.2 mg/L imposed by national environmental legislation. This suggests that additional biological treatments are still required to deal with the remaining oxidation by-products of MB, still present in the wastewater samples such as 3,7-bis (dimethyl-amino)-10H-phenothiazine 5-oxide.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  14. Kavi Rajan R, Hussein MZ, Fakurazi S, Yusoff K, Masarudin MJ
    Int J Mol Sci, 2019 Sep 20;20(19).
    PMID: 31547100 DOI: 10.3390/ijms20194667
    Naturally existing Chlorogenic acid (CGA) is an antioxidant-rich compound reported to act a chemopreventive agent by scavenging free radicals and suppressing cancer-causing mechanisms. Conversely, the compound's poor thermal and pH (neutral and basic) stability, poor solubility, and low cellular permeability have been a huge hindrance for it to exhibit its efficacy as a nutraceutical compound. Supposedly, encapsulation of CGA in chitosan nanoparticles (CNP), nano-sized colloidal delivery vector, could possibly assist in enhancing its antioxidant properties, in vitro cellular accumulation, and increase chemopreventive efficacy at a lower concentration. Hence, in this study, a stable, monodispersed, non-toxic CNP synthesized via ionic gelation method at an optimum parameter (600 µL of 0.5 mg/mL of chitosan and 200 µL of 0.7 mg/mL of tripolyphosphate), denoted as CNP°, was used to encapsulate CGA. Sequence of physicochemical analyses and morphological studies were performed to discern the successful formation of the CNP°-CGA hybrid. Antioxidant property (studied via DPPH (1,1-diphenyl-2-picrylhydrazyl) assay), in vitro antiproliferative activity of CNP°-CGA, and in vitro accumulation of fluorescently labeled (FITC) CNP°-CGA in cancer cells were evaluated. Findings revealed that successful formation of CNP°-CGA hybrid was reveled through an increase in particle size 134.44 ± 18.29 nm (polydispersity index (PDI) 0.29 ± 0.03) as compared to empty CNP°, 80.89 ± 5.16 nm (PDI 0.26 ± 0.01) with a maximal of 12.04 μM CGA loaded per unit weight of CNP° using 20 µM of CGA. This result correlated with Fourier-Transform Infrared (FTIR) spectroscopic analysis, transmission Electron Microscopy (TEM) and field emission scanning (FESEM) electron microscopy, and ImageJ evaluation. The scavenging activity of CNP°-CGA (IC50 5.2 ± 0.10 µM) were conserved and slightly higher than CNP° (IC50 6.4±0.78 µM). An enhanced cellular accumulation of fluorescently labeled CNP°-CGA in the human renal cancer cells (786-O) as early as 30 min and increased time-dependently were observed through fluorescent microscopic visualization and flow cytometric assessment. A significant concentration-dependent antiproliferation activity of encapsulated CGA was achieved at IC50 of 16.20 µM as compared to CGA itself (unable to determine from the cell proliferative assay), implying that the competent delivery vector, chitosan nanoparticle, is able to enhance the intracellular accumulation, antiproliferative activity, and antioxidant properties of CGA at lower concentration as compared to CGA alone.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  15. Djearamane S, Lim YM, Wong LS, Lee PF
    PeerJ, 2019;7:e7582.
    PMID: 31579572 DOI: 10.7717/peerj.7582
    Background: Zinc oxide nanoparticles (ZnO NPs) are widely used in household and cosmetic products which imply an increased releasing of these particles into the environment, especially aquatic ecosystems, resulting in the need of assessing the potential toxic effects of ZnO NPS on the aquatic organisms, particularly on microalgae which form the base for food chain of aquatic biota. The present study has investigated the dose- and time-dependent cellular accumulation and the corresponding cytotoxic effects of increasing concentrations of ZnO NPs from 10-200 μg/mL on microalga Haematococcus pluvialis at an interval of 24 h for 96 h.

    Methods: The scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) was used to qualitatively detect the cellular accumulation of ZnO NPs in algal cells, while inductively coupled plasma optical emission spectrometry (ICP OES) was performed to quantify the cell associated-zinc in algal cells. The percentage of cell death, reduction in algal biomass, and loss in photosynthetic pigments were measured to investigate the cytotoxic effects of ZnO NPs on H. pluvialis. Extracellular and intracellular changes in algal cells resulted from the treatment of ZnO NPs were demonstrated through optical, scanning, and transmission electron microscopic studies.

    Results: SEM-EDX spectrum evidenced the accumulation of ZnO NPs in algal biomass and ICP OES results reported a significant (p < 0.05) dose- and time-dependent accumulation of zinc in algal cells from 24 h for all the tested concentrations of ZnO NPs (10-200 μg/mL). Further, the study showed a significant (p < 0.05) dose- and time-dependent growth inhibition of H. pluvialis from 72 h at 10-200 μg/mL of ZnO NPs. The morphological examinations revealed substantial surface and intracellular damages in algal cells due to the treatment of ZnO NPs.

    Discussion: The present study reported the significant cellular accumulation of ZnO NPs in algal cells and the corresponding cytotoxic effects of ZnO NPs on H. pluvialis through the considerable reduction in algal cell viability, biomass, and photosynthetic pigments together with surface and intracellular damages.

    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  16. Namasivayam P, Skepper J, Hanke D
    Plant Cell Rep, 2006 Sep;25(9):887-95.
    PMID: 16568254
    The Brassica napus secondary embryogenesis system requires no exogenous growth regulator to stimulate embryo development. It is stable embryogenically over a long period of culture and has a distinct pre-embryogenic stage. This system was used to investigate the morphological and cellular changes occurring in the embryogenic tissue compared to non-embryogenic tissue using various microscopy techniques. A unique ultrastructural feature designated the extracellular matrix (ECM) was observed on the surface of pre-embryogenic embryoids but not on the non-embryogenic individuals. The ECM layer was found to be dominant in the pre-embryogenic stage and reduced to fragments during embryo growth and development in mature embryogenic tissue. This is a novel aspect of the phenotype previously unreported in the Brassica system. This structure might be linked to acquisition of embryogenic competence.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  17. Wang YG, Lee KL, Najiah M, Shariff M, Hassan MD
    Dis Aquat Organ, 2000 May 25;41(1):9-18.
    PMID: 10907134
    This paper describes a new bacterial white spot syndrome (BWSS) in cultured tiger shrimp Penaeus monodon. The affected shrimp showed white spots similar to those caused by white spot syndrome virus (WSSV), but the shrimp remained active and grew normally without significant mortalities. The study revealed no evidence of WSSV infection using electron microscopy, histopathology and nested polymerase chain reaction. Electron microscopy indicated bacteria associated with white spot formation, and with degeneration and discoloration of the cuticle as a result of erosion of the epicuticle and underlying cuticular layers. Grossly the white spots in BWSS and WSS look similar but showed different profiles under wet mount microscopy. The bacterial white spots were lichen-like, having perforated centers unlike the melanized dots in WSSV-induced white spots. Bacteriological examination showed that the dominant isolate in the lesions was Bacillus subtilis. The occurrence of BWSS may be associated with the regular use of probiotics containing B. subtilis in shrimp ponds. The externally induced white spot lesions were localized at the integumental tissues, i.e., cuticle and epidermis, and connective tissues. Damage to the deeper tissues was limited. The BWS lesions are non-fatal in the absence of other complications and are usually shed through molting.
    Matched MeSH terms: Microscopy, Electron; Microscopy, Electron, Scanning
  18. Jian Fui C, Xin Ting T, Sarjadi MS, Amin Z, Sarkar SM, Musta B, et al.
    ACS Omega, 2021 Mar 16;6(10):6766-6779.
    PMID: 33748590 DOI: 10.1021/acsomega.0c05840
    Highly active natural pandanus-extracted cellulose-supported poly(hydroxamic acid)-Cu(II) complex 4 was synthesized. The surface of pandanus cellulose was modified through graft copolymerization using purified methyl acrylate as a monomer. Then, copolymer methyl acrylate was converted into a bidentate chelating ligand poly(hydroxamic acid) via a Loosen rearrangement in the presence of an aqueous solution of hydroxylamine. Finally, copper species were incorporated into poly(hydroxamic acid) via the adsorption process. Cu(II) complex 4 was fully characterized by Fourier transform infrared (FTIR), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), inductively coupled plasma optical emission spectrometry (ICP-OES), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analyses. The cellulose-supported Cu(II) complex 4 was successfully applied (0.005 mol %) to the Ullmann etherification of aryl, benzyl halides, and phenacyl bromide with a number of aromatic phenols to provide the corresponding ethers with excellent yield [benzyl halide (70-99%); aryl halide (20-90%)]. Cu(II) complex 4 showed high stability and was easily recovered from the reaction mixture. It could be reused up to seven times without loss of its original catalytic activity. Therefore, Cu(II) complex 4 can be commercially utilized for the preparation of various ethers, and this synthetic technique could be a part in the synthesis of natural products and medicinal compounds.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  19. Matmin J, Jalani MA, Osman H, Omar Q, Ab'lah N, Elong K, et al.
    Nanomaterials (Basel), 2019 Feb 14;9(2).
    PMID: 30769911 DOI: 10.3390/nano9020264
    The photochemical synthesis of two-dimensional (2D) nanostructured from semiconductor materials is unique and challenging. We report, for the first time, the photochemical synthesis of 2D tin di/sulfide (PS-SnS₂-x, x = 0 or 1) from thioacetamide (TAA) and tin (IV) chloride in an aqueous system. The synthesized PS-SnS₂-x were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), a particle size distribution analyzer, X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), thermal analysis, UV⁻Vis diffuse reflectance spectroscopy (DR UV⁻Vis), and photoluminescence (PL) spectroscopy. In this study, the PS-SnS₂-x showed hexagonally closed-packed crystals having nanosheets morphology with the average size of 870 nm. Furthermore, the nanosheets PS-SnS₂-x demonstrated reusable photo-degradation of methylene blue (MB) dye as a water pollutant, owing to the stable electronic conducting properties with estimated bandgap (Eg) at ~2.5 eV. Importantly, the study provides a green protocol by using photochemical synthesis to produce 2D nanosheets of semiconductor materials showing photo-degradation activity under sunlight response.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  20. Ismail S, Yusof NA, Abdullah J, Abd Rahman SF
    Materials (Basel), 2020 Jul 16;13(14).
    PMID: 32708531 DOI: 10.3390/ma13143168
    Arsenic poisoning in the environment can cause severe effects on human health, hence detection is crucial. An electrochemical-based portable assessment of arsenic contamination is the ability to identify arsenite (As(III)). To achieve this, a low-cost electroanalytical assay for the detection of As(III) utilizing a silica nanoparticles (SiNPs)-modified screen-printed carbon electrode (SPCE) was developed. The morphological and elemental analysis of functionalized SiNPs and a SiNPs/SPCE-modified sensor was studied using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FTIR). The electrochemical responses towards arsenic detection were measured using the cyclic voltammetry (CV) and linear sweep anodic stripping voltammetry (LSASV) techniques. Under optimized conditions, the anodic peak current was proportional to the As(III) concentration over a wide linear range of 5 to 30 µg/L, with a detection limit of 6.2 µg/L. The suggested approach was effectively valid for the testing of As(III) found within the real water samples with good reproducibility and stability.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links