Displaying publications 281 - 300 of 344 in total

Abstract:
Sort:
  1. Fang TY, Praveena SM, deBurbure C, Aris AZ, Ismail SN, Rasdi I
    Chemosphere, 2016 Dec;165:358-368.
    PMID: 27665296 DOI: 10.1016/j.chemosphere.2016.09.051
    In recent years, environmental concerns over ultra-trace levels of steroid estrogens concentrations in water samples have increased because of their adverse effects on human and animal life. Special attention to the analytical techniques used to quantify steroid estrogens in water samples is therefore increasingly important. The objective of this review was to present an overview of both instrumental and non-instrumental analytical techniques available for the determination of steroid estrogens in water samples, evidencing their respective potential advantages and limitations using the Need, Approach, Benefit, and Competition (NABC) approach. The analytical techniques highlighted in this review were instrumental and non-instrumental analytical techniques namely gas chromatography mass spectrometry (GC-MS), liquid chromatography mass spectrometry (LC-MS), enzyme-linked immuno sorbent assay (ELISA), radio immuno assay (RIA), yeast estrogen screen (YES) assay, and human breast cancer cell line proliferation (E-screen) assay. The complexity of water samples and their low estrogenic concentrations necessitates the use of highly sensitive instrumental analytical techniques (GC-MS and LC-MS) and non-instrumental analytical techniques (ELISA, RIA, YES assay and E-screen assay) to quantify steroid estrogens. Both instrumental and non-instrumental analytical techniques have their own advantages and limitations. However, the non-instrumental ELISA analytical techniques, thanks to its lower detection limit and simplicity, its rapidity and cost-effectiveness, currently appears to be the most reliable for determining steroid estrogens in water samples.
    Matched MeSH terms: Limit of Detection
  2. Mukhtar NH, Mamat NA, See HH
    J Pharm Biomed Anal, 2018 Sep 05;158:184-188.
    PMID: 29883881 DOI: 10.1016/j.jpba.2018.05.044
    A sample pre-treatment method based on a dynamic mixed matrix membrane tip extraction followed by capillary electrophoresis with contactless conductivity detection (CE-C4D) was evaluated for the determination of tobramycin in human plasma. The extraction tip device consisted of a cellulose triacetate membrane tip wall immobilised with 15% (w/w) of hydrophilic lipophilic balance (HLB) nanoparticles as adsorbent. The extraction was performed dynamically by withdrawing/dispensing the plasma sample through the tip device followed by desorption into 20 μL of acidified aqueous solution at pH 3 prior to the CE-C4D analysis. Under the optimum conditions, the detection limit of the method for tobramycin was 10 ng/mL, with intraday and interday repeatability RSDs of 3.5% and 4.5%, respectively. Relative recoveries in spiked human plasma were 99.6%-99.9%. The developed approach was successfully demonstrated for the quantification of tobramycin in human plasma samples.
    Matched MeSH terms: Limit of Detection
  3. Al-Qaim FF, Mussa ZH, Yuzir A
    Anal Bioanal Chem, 2018 Aug;410(20):4829-4846.
    PMID: 29806068 DOI: 10.1007/s00216-018-1120-9
    The scarcity of data about the occurrence of pharmaceuticals in water bodies in Malaysia prompted us to develop a suitable analytical method to address this issue. We therefore developed a method based on solid-phase extraction combined with liquid chromatography-time of flight/mass spectrometry (SPE-LC-TOF/MS) for the analysis of sixteen prescribed and two nonprescribed pharmaceuticals that are potentially present in water samples. The levels of these pharmaceuticals, which were among the top 50 pharmaceuticals consumed in Malaysia during the period 2011-2014, in influent and effluent of five sewage treatment plants (STPs) in Bangi, Malaysia, were then analyzed using the developed method. All of the pharmaceuticals were separated chromatographically using a 5 μm, 2.1 mm × 250 mm C18 column at a flow rate of 0.3 mL/min. Limits of quantification (LOQs) were 0.3-8.2 ng/L, 6.5-89 ng/L, and 11.1-93.8 ng/L in deionized water (DIW), STP effluent, and STP influent, respectively, for most of the pharmaceuticals. Recoveries were 51-108%, 52-118%, and 80-107% from the STP influent, STP effluent, and DIW, respectively, for most of the pharmaceuticals. The matrix effect was also evaluated. The signals from carbamazepine, diclofenac sodium, and mefenamic acid were found to be completely suppressed in the STP influent. The signals from other compounds were found to be influenced by matrix effects more strongly in STP influent (enhancement or suppression of signal ≤180%) than in effluent (≤94%). The signal from prednisolone was greatly enhanced in the STP influent, indicating a matrix effect of -134%. Twelve pharmaceuticals were frequently detected in all five STPs, and caffeine, prazosin, and theophylline presented the highest concentrations among all the pharmaceuticals monitored: up to 7611, 550, and 319 ng/L in the STP influent, respectively. To the best of our knowledge, this is the first time that prazosin has been detected in a water matrix in Malaysia. Graphical abstract ᅟ.
    Matched MeSH terms: Limit of Detection
  4. Xia N, Deng D, Wang Y, Fang C, Li SJ
    Int J Nanomedicine, 2018;13:2521-2530.
    PMID: 29731627 DOI: 10.2147/IJN.S154046
    Background: Prostate-specific antigen (PSA), a serine protease, is a biomarker for preoperative diagnosis and screening of prostate cancer and monitoring of its posttreatment.

    Methods: In this work, we reported a colorimetric method for clinical detection of PSA using gold nanoparticles (AuNPs) as the reporters. The method is based on ascorbic acid (AA)-induced in situ formation of AuNPs and Cu2+-catalyzed oxidation of AA. Specifically, HAuCl4 can be reduced into AuNPs by AA; Cu2+ ion can catalyze the oxidation of AA by O2 to inhibit the formation of AuNPs. In the presence of the PSA-specific peptide (DAHSSKLQLAPP)-modified gold-coated magnetic microbeads (MMBs; denoted as DAHSSKLQLAPP-MMBs), complexation of Cu2+ by the MMBs through the DAH-Cu2+ interaction depressed the catalyzed oxidation of AA and thus allowed for the formation of red AuNPs. However, once the peptide immobilized on the MMB surface was cleaved by PSA, the DAHSSKLQ segment would be released. The resultant LAPP fragment remaining on the MMB surface could not sequestrate Cu2+ to depress its catalytic activity toward AA oxidation. Consequently, no or less AuNPs were generated.

    Results: The linear range for PSA detection was found to be 0~0.8 ng/mL with a detection limit of 0.02 ng/mL. Because of the separation of cleavage step and measurement step, the interference of matrix components in biological samples was avoided.

    Conclusion: The high extinction coefficient of AuNPs facilitates the colorimetric analysis of PSA in serum samples. This work is helpful for designing of other protease biosensors by matching specific peptide substrates.

    Matched MeSH terms: Limit of Detection
  5. Mohd Bakhori N, Yusof NA, Abdullah J, Wasoh H, Md Noor SS, Ahmad Raston NH, et al.
    Sensors (Basel), 2018 Jun 14;18(6).
    PMID: 29899214 DOI: 10.3390/s18061932
    In the present study, a beneficial approach for the ultrasensitive and affordable naked eye detection and diagnosis of tuberculosis (TB) by utilizing plasmonic enzyme-linked immunosorbent assay (ELISA) via antibody-antigen interaction was studied. Here, the biocatalytic cycle of the intracellular enzymes links to the formation and successive growth of the gold nanoparticles (GNPs) for ultrasensitive detection. The formation of different colored solutions by the plasmonic nanoparticles in the presence of enzyme labels links directly to the existence or non-existence of the TB analytes in the sample solutions. For disease detection, the adapted protocol is based mainly on the conventional ELISA procedure that involves catalase-labeled antibodies, i.e., the enzymes consume hydrogen peroxide and further produce GNPs with the addition of gold (III) chloride. The amount of hydrogen peroxide remaining in the solution determines whether the GNPs solution is to be formed in the color blue or the color red, as it serves as a confirmation for the naked eye detection of TB analytes. However, the conventional ELISA method only shows tonal colors that need a high concentration of analyte to achieve high confidence levels for naked eye detection. Also, in this research, we proposed the incorporation of protein biomarker, Mycobacterium tuberculosis ESAT-6-like protein esxB (CFP-10), as a means of TB detection using plasmonic ELISA. With the use of this technique, the CFP-10 detection limit can be lowered to 0.01 µg/mL by the naked eye. Further, our developed technique was successfully tested and confirmed with sputum samples from patients diagnosed with positive TB, thereby providing enough evidence for the utilization of our technique in the early diagnosis of TB disease.
    Matched MeSH terms: Limit of Detection
  6. Anwar A, Minhaz A, Hussain SS, Anwar A, Simjee SU, Ishaq M, et al.
    Spectrochim Acta A Mol Biomol Spectrosc, 2019 Jan 05;206:135-140.
    PMID: 30096697 DOI: 10.1016/j.saa.2018.07.099
    Gold nanoparticles (AuNPs) stabilized by new cationic 1‑(3‑(acetylthio)propyl)pyrazin‑1‑ium ligand (PPTA) were synthesized. AuNPs stabilized by PPTA (PPTA-AuNPs) were found to be spherical and polydispersed with the average size of 60 nm. Human neuroblastoma (SHSY-5Y) cells permeability of PPTA-AuNPs was found to be a key feature to study the intracellular quenching of Fe(III) proliferative activity. In vitro MTT assay revealed non-cytotoxicity of PPTA and PPTA-AuNPs at 100 μM concentration, while treatment of 100 μM of Fe(III) with SHSY-5Y cells resulted into higher cells viability. Contrary, a mixture of 1:1 Fe(III) with PPTA-AuNPs showed no change in the viability of cells at same concentration which suggests the intracellular complexation and recognition of Fe(III) by PPTA-AuNPs. AFM morphological analysis of SHSY-5Y cells also supported the MTT assay results, and it is safe to conclude that PPTA-AuNPs can be used as Fe(III) probes in living cells. In addition, Fe(III) caused a significant decrease in the absorbance of surface plasmon resonance (SPR) band of PPTA-AuNPs in a wide range of concentration and pH, with limit of detection 4.3 μM. Moreover, the specific response of PPTA-AuNPs towards Fe(III) was unaffected by the interference of other metals and components of real samples of tap water.
    Matched MeSH terms: Limit of Detection
  7. Mahmuda A, Bande F, Abdulhaleem N, Abd Majid R, Awang Hamat R, Omar Abdullah W, et al.
    Iran J Parasitol, 2018 8 3;13(2):204-214.
    PMID: 30069204
    Background: Currently, most of the available serological diagnostic kits for strongyloidiasis are based on the use of the crude antigens of Strongyloides ratti, which are good, but with less sensitivity towards the infection. Hence, this study aimed to produce and evaluate monoclonal antibody for detecting soluble parasite antigen in animal sera.

    Methods: The study was conducted in the Department of Medical Microbiology and Parasitology, University Putra Malaysia in 2014-2017. Saline extract protein from the infective larvae of S. ratti was used to immunize BALB/c mice and subsequent fusion of the B-cells with myeloma cells (SP2/0) using 50% PEG. The hybridomas were cultured in HAT medium and cloned by limiting dilutions. Positive hybrids were screened by indirect ELISA. The ascites fluid from the antibody-secreting hybridoma was purified and the MAb was characterized by western-blots and evaluated in sandwich ELISA for reactivity against the homologous and heterologous antigens.

    Results: An IgG1 that recognizes a 30 and 34 kDa protein bands was obtained. The MAb was recognized by all S. ratti-related antigens and cross-reacted with only Toxocara canis antigens in both assays. The minimum antigen detection limit was found to be 5 ng/ml. All antibody-positive rat and dog sera evaluated have shown antigen-positive reactions in Sandwich-ELISA.

    Conclusion: The MAb produced, was able to detect antigens in strongyloidiasis and toxocariasis in animal models and may also be useful for the serological detection of active strongyloidiasis and visceral toxocariasis in human sera.

    Matched MeSH terms: Limit of Detection
  8. Zahed FM, Hatamluyi B, Lorestani F, Es'haghi Z
    J Pharm Biomed Anal, 2018 Nov 30;161:12-19.
    PMID: 30142492 DOI: 10.1016/j.jpba.2018.08.004
    A highly efficient electrochemical sensor for the analysis of anticancer drug 5-fluorouracil (5-FU), is fabricated based on silver nanoparticles-polyaniline nanotube (AgNPs@PANINTs). AgNPs@PANINTs nanocomposite has been synthesized by a simple one-step method. Synthesized AgNPs@PANINTs nanocomposite was studied by Fourier transform infrared spectrometry, Scanning Electron Microscopy and Energy Dispersive X-ray. The fabricated PANINTs@AgNPs PGE was applied to the electrochemical sensing of 5-FU. Cyclic voltammetry and differential pulse voltammetry experiments illustrated high electro activity for the AgNPs@PANINTs nanocomposite. The study was explored using the Taguchi experimental design method. Electrochemical measurements using differential pulse voltammetry showed a wide linear relationship between 5-FU concentration and peak height within the range 1.0-300.0 μM with a low detection limit (0.06 μM). Also, the fabricated sensor showed excellent selectivity in the presence of two anticancer drugs and a number of other interfering compounds. The as-prepared sensor showed to be a promising device for a simple, rapid, and direct analysis of 5-FU.
    Matched MeSH terms: Limit of Detection
  9. Rahim MZA, Govender-Hondros G, Adeloju SB
    Talanta, 2018 Nov 01;189:418-428.
    PMID: 30086941 DOI: 10.1016/j.talanta.2018.06.041
    The development of free and total cholesterol nanobiosensors based on a single step electrochemical integration of gold nanoparticles (AuNPs), cholesterol oxidase (COx), cholesterol esterase (CE) and a mediator with polypyrrole (PPy) films is described. The incorporation of the various components in the PPy films was confirmed by chronopotentiometry, cyclic voltammetry (CV), scanning electron microscopy, energy dispersive X-ray analysis (SEM-EDX), and Fourier transformed infrared (FTIR) spectroscopy. The free cholesterol, PPy-NO3--Fe(CN)64--AuNPs-COx, nanobiosensor achieved a minimum detectable concentration of 5 μM, a linear concentration range of 5-25 μM and a sensitivity of 1.6 µA cm-2 µM-1 in 0.05 M phosphate buffer (pH 7.00). For the total cholesterol, PPy-NO3--Fe(CN)64--AuNPs-COx-CE, nanobiosensor which also involved the co-incorporation of cholesterol esterase (CE) with the other components, the achieved performances include a minimum detectable total cholesterol concentration of 25 μM, a broader linear concentration range of 25-170 μM and a lower sensitivity of 0.1 µA µM-1 cm-2. Owing to its high selectivity, the presence of common interferants did not affect the total cholesterol measurement with the PPy-NO3--Fe(CN)64--AuNPs-COx-CE nanobiosensor. Both nanobiosensors were successfully used for direct and indirect determination of total cholesterol in human blood serum samples.
    Matched MeSH terms: Limit of Detection
  10. Nasir ANM, Yahaya N, Zain NNM, Lim V, Kamaruzaman S, Saad B, et al.
    Food Chem, 2019 Mar 15;276:458-466.
    PMID: 30409620 DOI: 10.1016/j.foodchem.2018.10.044
    Thiol-functionalized magnetic carbon nanotubes (TMCNTs) were employed as the sorbent in the magnetic micro-solid phase extraction (M-µ-SPE) of sulfonamide antibiotics (SAs) in water, milks and chicken meat products prior to high performance liquid chromatography-diode array detector (HPLC-DAD) analysis. The synthesized sorbent was characterized by several spectroscopic techniques. Optimum conditions were: 20 mg of TMCNTs at pH 4, 2 min extraction time, 10% addition of salt and 30 mL of sample volume. Under the optimized TMCNTs-M-µ-SPE and HPLC-DAD conditions, the method showed good linearity in the range of 0.1-500 µg L-1 (r2 ≥ 0.9950), low limits of detection (0.02-1.5 µg L-1), good analytes recovery (80.7-116.2%) and acceptable RSDs (0.3-7.7%, n = 15). The method was applied to tap water (1), milks (15) and commercial chicken meat products (35), SAs were detected in five chicken meat samples (3.0-25.7 µg L-1). The method is critically compared to those reported in the literature.
    Matched MeSH terms: Limit of Detection
  11. Appaturi JN, Pulingam T, Thong KL, Muniandy S, Ahmad N, Leo BF
    Anal Biochem, 2020 01 15;589:113489.
    PMID: 31655050 DOI: 10.1016/j.ab.2019.113489
    Rapid detection of foodborne pathogens is crucial as ingestion of contaminated food products may endanger human health. Thus, the objective of this study was to develop a biosensor using reduced graphene oxide-carbon nanotubes (rGO-CNT) nanocomposite via the hydrothermal method for accurate and rapid label-free electrochemical detection of pathogenic bacteria such as Salmonella enterica. The rGO-CNT nanocomposite was characterized using Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction and transmission electron microscopy. The nanocomposite was dropped cast on the glassy carbon electrode and further modified with amino-modified DNA aptamer. The resultant ssDNA/rGO-CNT/GCE aptasensor was then used to detect bacteria by using differential pulse voltammetry (DPV) technique. Synergistic effects of aptasensor was evident through the combination of enhanced electrical properties and facile chemical functionality of both rGO and CNT for the stable interface. Under optimal experimental conditions, the aptasensor could detect S. Typhimurium in a wide linear dynamic range from 101 until 108 cfu mL-1 with a 101 cfu mL-1 of the limit of detection. This aptasensor also showed good sensitivity, selectivity and specificity for the detection of microorganisms. Furthermore, we have successfully applied the aptasensor for S. Typhimurium detection in real food samples.
    Matched MeSH terms: Limit of Detection
  12. Lim WY, Goh CH, Thevarajah TM, Goh BT, Khor SM
    Biosens Bioelectron, 2020 Jan 01;147:111792.
    PMID: 31678828 DOI: 10.1016/j.bios.2019.111792
    Recently, surface enhanced Raman scattering (SERS) has attracted much attention in medical diagnosis applications owing to better detection sensitivity and lower limit of detection (LOD) than colorimetric detection. In this paper, a novel calibration-free SERS-based μPAD with multi-reaction zones for simultaneous quantitative detection of multiple cardiac biomarkers - GPBB, CK-MB and cTnT for early diagnosis and prognosis of acute myocardial infarction (AMI) are presented. Three distinct Raman probes were synthesised, subsequently conjugated with respective detecting antibodies and used as SERS nanotags for cardiac biomarker detection. Using a conventional calibration curve, quantitative simultaneous measurement of multiple cardiac biomarkers on SERS-based μPAD was performed based on the characteristic Raman spectral features of each reporter used in different nanotags. However, a calibration free point-of-care testing device is required for fast screening to rule-in and rule-out AMI patients. Partial least squares predictive models were developed and incorporated into the immunosensing system, to accurately quantify the three unknown cardiac biomarkers levels in serum based on the previously obtained Raman spectral data. This method allows absolute quantitative measurement when conventional calibration curve fails to provide accurate estimation of cardiac biomarkers, especially at low and high concentration ranges. Under an optimised condition, the LOD of our SERS-based μPAD was identified at 8, 10, and 1 pg mL-1, for GPBB, CK-MB and cTnT, respectively, which is well below the clinical cutoff values. Therefore, this proof-of-concept technique shows significant potential for highly sensitive quantitative detection of multiplex cardiac biomarkers in human serum to expedite medical decisions for enhanced patient care.
    Matched MeSH terms: Limit of Detection
  13. Lv Q, Wang Y, Su C, Lakshmipriya T, Gopinath SCB, Pandian K, et al.
    Int J Biol Macromol, 2019 Aug 01;134:354-360.
    PMID: 31078598 DOI: 10.1016/j.ijbiomac.2019.05.044
    Human papillomavirus (HPV) is a double-standard DNA virus, as well as the source of infection to the mucous membrane. It is a sexually transmitted disease that brings the changes in the cervix cells. Oncogenes, E6 and E7 play a pivotal role in the HPV infection. Identifying these genes to detect HPV strains, especially a prevalent HPV16 strain, will bring a great impact. Among different sensing strategies for pathogens, the dielectric electrochemical biosensor shows the potential due to its higher sensitivity. In this research, HPV16-E7 DNA sequence was detected on the carbodiimidazole-modified interdigitated electrode (IDE) surface with the detection limit of 1 fM. To enhance the sensitivity, the target sequence was conjugated on gold nanoparticle (GNP) and attained detection to the level of 10 aM. This produced ~100 folds improvement in detecting HPV16-E7 gene and 4 folds increment in the current flow. The stability of HPV16-E7 DNA sequences on GNP was verified by the salt-induced GNP aggregation. The current system has shown the higher specificity by comparing against non-complementary and triple-mismatched DNA sequences of HPV16-E7. This demonstration in detecting HPV16-E7 using dielectric IDE sensing system with a higher sensitivity can be recommended for detecting a wide range of disease-causing DNA-markers.
    Matched MeSH terms: Limit of Detection
  14. Letchumanan I, Gopinath SCB, Arshad MKM
    Mikrochim Acta, 2020 01 14;187(2):128.
    PMID: 31938893 DOI: 10.1007/s00604-020-4115-0
    A method is described for the electrochemical determination of squamous cell carcinoma (SCC) antigen, and by testing the effect of 30 nm gold nanoparticles (GNPs). Three comparative studies were performed in the presence and absence of GNPs, and with agglomerated GNPs. The divalent ion Ca(II) was used to induce a strong agglomeration of GNPs, as confirmed by colorimetry and voltammetry. Herein, colorimetry was used to test the best amount of salt needed to aggregate the GNPs. Despite, voltammetry was used to determine the status of biomolecules on the sensor. The topography of the surface of ZnO-coated interdigitated electrodes was analyzed by using 3D-nano profilometry, scanning electron microscopy, atomic force microscopy and high-power microscopy. The interaction between SCC antigen and antibody trigger vibrations on the sensor and cause dipole moment, which was measured using a picoammeter with a linear sweep from 0 to 2 V at 0.01 V step voltage. The sensitivity level was 10 fM by 3σ calculation for the dispersed GNP-conjugated antigen. This indicates a 100-fold enhancement compared to the condition without GNP conjugation. However, the sensitivity level for agglomerated GNPs conjugated antibody was not significant with 100 fM sensitivity. Specificity was tested for other proteins in serum, namely blood clotting factor IX, C-reactive protein, and serum albumin. The SCC antigen was quantified in spiked serum and gave recoveries that ranged between 80 and 90%. Graphical abstractSchematic representation of SCC (squamous cell carcinoma) antigen determination using divalent ion induced agglomerated GNPs. Sensitivity increment depends on the occurrence of more SCC antigen and antibody binding event via GNPs integration. Notably, lower detection limit was achieved at femto molar with proper orientation of biological molecules.
    Matched MeSH terms: Limit of Detection
  15. Azri FA, Eissa S, Zourob M, Chinnappan R, Sukor R, Yusof NA, et al.
    Mikrochim Acta, 2020 04 12;187(5):266.
    PMID: 32279134 DOI: 10.1007/s00604-020-4218-7
    An electrochemical aptasensor is described for determination of the phytohormone of zearalenone (ZEA). The gold electrode was modified with ZEA via covalent attachment using cysteamine-hydrochloride and 1,4-phenylene diisocyanate linker. A truncated ZEA aptamer with a dissociation constant of 13.4 ± 2.1 nM was used in an aptasensor. The electrochemical property was investigated using square wave voltammetry for monitoring the change in the electron transfer using the ferro/ferricyanide system as redox probe. Under optimal experimental conditions, the response was best measured at a potential of 0.20 V (vs. Ag/AgCl). The signals depended on the competitive mechanism between the immobilised ZEA and free ZEA for the aptamer binding site. The aptasensor works in the range 0.01 to 1000 ng·mL-1 ZEA concentration, with a detection limit of 0.017 ng·mL-1. High degree of cross-reactivity with the other analogues of ZEA was observed, whereas none towards other mycotoxins. The aptasensor was further applied for the determination of ZEA in the extract of maize grain and showed good recovery percentages between 87 and 110%. Graphical abstract Schematic representation of the electrochemical determination of zearalenone based on indirect competitive assay. Step a Immobilisation of ZEA on the surface of gold electrode via covalent attachment, b competition for the ZEA aptamer binding site between immobilised and free ZEA, and c current signal of the binding event based on SWV technique.
    Matched MeSH terms: Limit of Detection
  16. Strand TA, Ulak M, Kvestad I, Henjum S, Ulvik A, Shrestha M, et al.
    Pediatr Res, 2018 11;84(5):611-618.
    PMID: 29967525 DOI: 10.1038/s41390-018-0072-2
    BACKGROUND: Many children worldwide have poor vitamin B12 status. The objective of this study was to estimate association between maternal and infant vitamin B12 status and long-term growth.

    METHODS: We randomly selected 500 Nepali mother-infant pairs and measured maternal intake and infant and maternal vitamin B12 status using plasma cobalamin, total plasma homocysteine, and methylmalonic acid concentrations. We revisited available children when they were 5 years old and measured growth. The associations between intake and maternal and infant markers of vitamin B12 and growth were estimated in multiple linear regression models adjusting for relevant confounders (n = 331).

    RESULTS: Maternal vitamin B12 intake and status and vitamin B12 status in infancy predicted linear growth at 5 years of age, but not during infancy. Each microgram increase in the vitamin B12 intake of the mother during infancy was associated with an increase in height of 0.4 (0.2, 0.6) height-for-age z-scores and 1.7 (0.7, 2.7) cm around the child's fifth birthday.

    CONCLUSION: Vitamin B12 status and intake in early life is an important determinant for linear growth at school age. Our findings should be verified in randomized, placebo controlled trials before translated into public health recommendations.

    Matched MeSH terms: Limit of Detection
  17. Wong ZW, Ng JF, New SY
    Chem Asian J, 2021 Dec 13;16(24):4081-4086.
    PMID: 34668337 DOI: 10.1002/asia.202101145
    miRNA (miR)-155 is a potential biomarker for breast cancers. We aimed at developing a nanosensor for miR-155 detection by integrating hybridization chain reaction (HCR) and silver nanoclusters (AgNCs). HCR serves as an enzyme-free and isothermal amplification method, whereas AgNCs provide a built-in fluorogenic detection probe that could simplify the downstream analysis. The two components were integrated by adding a nucleation sequence of AgNCs to the hairpin of HCR. The working principle was based on the influence of microenvironment towards the hosted AgNCs, whereby unfolding of hairpin upon HCR has manipulated the distance between the hosted AgNCs and cytosine-rich toehold region of hairpin. As such, the dominant emission of AgNCs changed from red to yellow in the absence and presence of miR-155, enabling a ratiometric measurement of miR with high sensitivity. The limit of detection (LOD) of our HCR-AgNCs nanosensor is 1.13 fM in buffered solution. We have also tested the assay in diluted serum samples, with comparable LOD of 1.58 fM obtained. This shows the great promise of our HCR-AgNCs nanosensor for clinical application.
    Matched MeSH terms: Limit of Detection
  18. Jamadon NK, Busairi N, Syahir A
    Protein Pept Lett, 2018;25(1):90-95.
    PMID: 29237368 DOI: 10.2174/0929866525666171214111503
    BACKGROUND: Mercury (II) ion, Hg2+ is among the most common pollutants with the ability to affect the environment. The implications of their elevation in the environment are mainly due to the industrialization and urbanization process. Current methods of Hg2+ detection primarily depend on sophisticated and expensive instruments. Hence, an alternative and practical way of detecting Hg2+ ions is needed to go beyond these limitations. Here, we report a detection method that was developed using an inhibitive enzymatic reaction that can be monitored through a smartphone. Horseradish peroxidase (HRP) converted 4-aminoantipyrene (4-AAP) into a red colored product which visible with naked eye. A colorless product, on the other hand, was produced indicating the presence of Hg2+ that inhibit the reaction.

    OBJECTIVES: The aim of this study is to develop a colorimetric sensor to detect Hg2+ in water sources using HRP inhibitive assay. The system can be incorporated with a mobile app to make it practical for a prompt in-situ analysis.

    METHODS: HRP enzyme was pre-incubated with different concentration of Hg2+ at 37°C for 1 hour prior to the addition of chromogen. The mix of PBS buffer, 4-AAP and phenol which act as a chromogen was then added to the HRP enzyme and was incubated for 20 minutes. Alcohol was added to stop the enzymatic reaction, and the change of colour were observed and analyse using UV-Vis spectrophotometer at 520 nm wavelength. The results were then analysed using GraphPad PRISM 4 for a non-linear regression analysis, and using Mathematica (Wolfram) 10.0 software for a hierarchical cluster analysis. The samples from spectroscopy measurement were directly used for dynamic light scattering (DLS) evaluation to evaluate the changes in HRP size due to Hg2+ malfunctionation. Finally, molecular dynamic simulations comparing normal and malfunctioned HRP were carried out to investigate structural changes of the HRP using YASARA software.

    RESULTS: Naked eye detection and data from UV-Vis spectroscopy showed good selectivity of Hg2+ over other metal ions as a distinctive color of Hg2+ is observed at 0.5 ppm with the IC50 of 0.290 ppm. The mechanism of Hg2+ inhibition towards HRP was further validated using a dynamic light scattering (DLS) and molecular dynamics (MD) simulation to ensure that there is a conformational change in HRP size due to the presence of Hg2+ ions. The naked eye detection can be quantitatively determined using a smartphone app namely ColorAssist, suggesting that the detection signal does not require expensive instruments to be quantified.

    CONCLUSION: A naked-eye colorimetric sensor for mercury ions detection was developed. The colour change due to the presence of Hg2+ can be easily distinguished using an app via a smartphone. Thus, without resorting to any expensive instruments that are mostly laboratory bound, Hg2+ can be easily detected at IC50 value of 0.29 ppm. This is a promising alternative and practical method to detect Hg2+ in the environment.

    Matched MeSH terms: Limit of Detection
  19. Ashley J, Shukor Y, D'Aurelio R, Trinh L, Rodgers TL, Temblay J, et al.
    ACS Sens, 2018 02 23;3(2):418-424.
    PMID: 29333852 DOI: 10.1021/acssensors.7b00850
    Food recalls due to undeclared allergens or contamination are costly to the food manufacturing industry worldwide. As the industry strives for better manufacturing efficiencies over a diverse range of food products, there is a need for the development of new analytical techniques to improve monitoring of the presence of unintended food allergens during the food manufacturing process. In particular, the monitoring of wash samples from cleaning in place systems (CIP), used in the cleaning of food processing equipment, would allow for the effective removal of allergen containing ingredients in between food batches. Casein proteins constitute the biggest group of proteins in milk and hence are the most common milk protein allergen in food ingredients. As such, these proteins could present an ideal analyte for cleaning validation. In this work, molecularly imprinted polymer nanoparticles (nanoMIPs) with high affinity toward bovine α-casein were synthesized using a solid-phase imprinting method. The nanoMIPs were then characterized and incorporated into label free surface plasmon resonance (SPR) based sensor. The nanoMIPs demonstrated good binding affinity and selectivity toward α-casein (KD ∼ 10 × 10-9 M). This simple affinity sensor demonstrated the quantitative detection of α-casein achieving a detection limit of 127 ± 97.6 ng mL-1 (0.127 ppm) which is far superior to existing commercially available ELISA kits. Recoveries from spiked CIP wastewater samples were within the acceptable range (87-120%). The reported sensor could allow food manufacturers to adequately monitor and manage food allergen risk in food processing environments while ensuring that the food produced is safe for the consumer.
    Matched MeSH terms: Limit of Detection
  20. Markus A, Gbadamosi AO, Yusuff AS, Agi A, Oseh J
    Environ Sci Pollut Res Int, 2018 Dec;25(35):35130-35142.
    PMID: 30328041 DOI: 10.1007/s11356-018-3402-3
    In this study, a new magnetic adsorbent based on magnetite-sporopollenin/graphene oxide (Fe3O4-SP/GO) was successfully developed. The adsorbent was applied for magnetic solid phase extraction (MSPE) of three selected polar organophosphorus pesticides (OPPs), namely, dimethoate, phenthoate, and phosphamidon, prior to gas chromatography analysis with electron capture detection (GC-μECD). The Fe3O4-SP/GO adsorbent combines the advantages of superior adsorption capability of the modified sporopollenin (SP) with graphene oxide (GO) and magnetite (Fe3O4) for easy isolation from sample solution. Several MSPE parameters were optimized. Under optimized conditions, excellent linearity (R2 ≥ 0.9994) was achieved using matrix match calibration in the range of 0.1 to 500 ng mL-1. The limit of detection (LOD) method (S/N = 3) was from 0.02 to 0.05 ng mL-1. The developed Fe3O4-SP/GO MSPE method was successfully applied for the determination of these three polar OPPs in cucumber, long beans, bell pepper, and tomato samples. Good recoveries (81.0-120.0%) and good relative standard deviation (RSD) (1.4-7.8%, n = 3) were obtained for the spiked OPPs (1 ng mL-1) from real samples. This study is beneficial for adsorptive removal of toxic pesticide compounds from vegetable samples.
    Matched MeSH terms: Limit of Detection
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links