Displaying publications 241 - 260 of 344 in total

Abstract:
Sort:
  1. Hassan RA, Heng LY, Ahmad A, Tan LL
    PLoS One, 2019;14(4):e0214580.
    PMID: 30990847 DOI: 10.1371/journal.pone.0214580
    A potentiometric whole cell biosensor based on immobilized marine bacterium, Pseudomonas carrageenovora producing κ-carrageenase and glycosulfatase enzymes for specific and direct determination of κ-carrageenan, is described. The bacterial cells were immobilized on the self-plasticized hydrogen ion (H+)-selective acrylic membrane electrode surface to form a catalytic layer. Hydrogen ionophore I was incorporated in the poly(n-butyl acrylate) [poly(nBA)] as a pH ionophore. Catalytic decomposition of κ-carrageenan by the bienzymatic cascade reaction produced neoagarobiose, an inorganic sulfate ion and a proton. The latter was detectable by H+ ion transducer for indirect potentiometric quantification of κ-carrageenan concentration. The use of a disposable screen-printed Ag/AgCl electrode (SPE) provided no cleaning requirement and enabled κ-carrageenan detection to be carried out conveniently without cross contamination in a complex food sample. The SPE-based microbial biosensor response was found to be reproducible with high reproducibility and relative standard deviation (RSD) at 2.6% (n = 3). The whole cell biosensor demonstrated a broad dynamic linear response range to κ-carrageenan from 0.2-100 ppm in 20 mM phosphate buffer saline (PBS) at pH 7.5 with a detection limit at 0.05 ppm and a Nernstian sensitivity of 58.78±0.87 mV/decade (R2 = 0.995). The biosensor showed excellent selectivity towards κ-carrageenan compared to other types of carrageenans tested e.g. ι-carrageenan and λ-carrageenan. No pretreatment to the food sample was necessary when the developed whole cell biosensor was employed for direct assay of κ-carrageenan in dairy product.
    Matched MeSH terms: Limit of Detection
  2. Chan SH, Lee W, Asmawi MZ, Tan SC
    PMID: 27232053 DOI: 10.1016/j.jchromb.2016.05.015
    A sequential solid-phase extraction (SPE) method was developed and validated using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) for the detection and quantification of salbutamol enantiomers in porcine urine. Porcine urine samples were hydrolysed with β-glucuronidase/arylsulfatase from Helix pomatia and then subjected to a double solid-phase extraction (SPE) first using the Abs-Elut Nexus SPE and then followed by the Bond Elut Phenylboronic Acid (PBA) SPE. The salbutamol enantiomers were separated using the Astec CHIROBIOTIC™ T HPLC column (3.0mm×100mm; 5μm) maintained at 15°C with a 15min isocratic run at a flow rate of 0.4mL/min. The mobile phase constituted of 5mM ammonium formate in methanol. Salbutamol and salbutamol-tert-butyl-d9 (internal standard, IS) was monitored and quantified with the multiple reaction monitoring (MRM) mode. The method showed good linearity for the range of 0.1-10ng/mL with limit of quantification at 0.3ng/mL. Analysis of the QC samples showed intra- and inter-assay precisions to be less than 5.04%, and recovery ranging from 83.82 to 102.33%.
    Matched MeSH terms: Limit of Detection
  3. Ang SH, Thevarajah TM, Woi PM, Alias YB, Khor SM
    J Chromatogr B Analyt Technol Biomed Life Sci, 2016 Mar 15;1015-1016:157-165.
    PMID: 26927875 DOI: 10.1016/j.jchromb.2016.01.059
    An immunosensor that operates based on the principles of lateral flow was developed for direct detection of hemoglobin A1c (HbA1c) in whole blood. We utilized colloidal gold-functionalized antibodies to transduce the specific signal generated when sandwich immuno-complexes were formed on the strip in the presence of HbA1c. The number and intensity of the test lines on the strips indicate normal, under control, and elevated levels of HbA1c. In addition, a linear relationship between HbA1c levels and immunosensor signal intensity was confirmed, with a dynamic range of 4-14% (20-130 mmol mol(-1)) HbA1c. Using this linear relationship, we determined the HbA1c levels in blood as a function of the signal intensity on the strips. Measurements were validated using the Bio-Rad Variant II HPLC and DCA Vantage tests. Moreover, the immunosensor was verified to be highly selective for detection of HbA1c against HbA0, glycated species of HbA0, and HbA2. The limit of detection was found to be 42.5 μg mL(-1) (1.35 mmol mol(-1)) HbA1c, which is reasonably sensitive compared to the values reported for microarray immunoassays. The shelf life of the immunosensor was estimated to be 1.4 months when stored at ambient temperature, indicating that the immunoassay is stable. Thus, the lateral flow immunosensor developed here was shown to be capable of performing selective, accurate, rapid, and stable detection of HbA1c in human blood samples.
    Matched MeSH terms: Limit of Detection
  4. Tan AF, Sakam SSB, Rajahram GS, William T, Abd Rachman Isnadi MF, Daim S, et al.
    Front Cell Infect Microbiol, 2022;12:1023219.
    PMID: 36325471 DOI: 10.3389/fcimb.2022.1023219
    BACKGROUND: Plasmodium knowlesi causes zoonotic malaria across Southeast Asia. First-line diagnostic microscopy cannot reliably differentiate P. knowlesi from other human malaria species. Rapid diagnostic tests (RDTs) designed for P. falciparum and P. vivax are used routinely in P. knowlesi co-endemic areas despite potential cross-reactivity for species-specific antibody targets.

    METHODS: Ten RDTs were evaluated: nine to detect clinical P. knowlesi infections from Malaysia, and nine assessing limit of detection (LoD) for P. knowlesi (PkA1-H.1) and P. falciparum (Pf3D7) cultures. Targets included Plasmodium-genus parasite lactate dehydrogenase (pan-pLDH) and P. vivax (Pv)-pLDH.

    RESULTS: Samples were collected prior to antimalarial treatment from 127 patients with microscopy-positive PCR-confirmed P. knowlesi mono-infections. Median parasitaemia was 788/µL (IQR 247-5,565/µL). Pan-pLDH sensitivities ranged from 50.6% (95% CI 39.6-61.5) (SD BIOLINE) to 87.0% (95% CI 75.1-94.6) (First Response® and CareStart™ PAN) compared to reference PCR. Pv-pLDH RDTs detected P. knowlesi with up to 92.0% (95% CI 84.3-96.7%) sensitivity (Biocredit™). For parasite counts ≥200/µL, pan-pLDH (Standard Q) and Pv-pLDH RDTs exceeded 95% sensitivity. Specificity of RDTs against 26 PCR-confirmed negative controls was 100%. Sensitivity of six highest performing RDTs were not significantly different when comparing samples taken before and after (median 3 hours) antimalarial treatment. Parasite ring stages were present in 30% of pre-treatment samples, with ring stage proportions (mean 1.9%) demonstrating inverse correlation with test positivity of Biocredit™ and two CareStart™ RDTs.For cultured P. knowlesi, CareStart™ PAN demonstrated the lowest LoD at 25 parasites/µL; LoDs of other pan-pLDH ranged from 98 to >2000 parasites/µL. Pv-pLDH LoD for P. knowlesi was 49 parasites/µL. No false-positive results were observed in either P. falciparum-pLDH or histidine-rich-protein-2 channels.

    CONCLUSION: Selected RDTs demonstrate sufficient performance for detection of major human malaria species including P. knowlesi in co-endemic areas where microscopy is not available, particularly for higher parasite counts, although cannot reliably differentiate among non-falciparum malaria.

    Matched MeSH terms: Limit of Detection
  5. Abu Ismaiel A, Aroua MK, Yusoff R
    Sensors (Basel), 2014 Jul 21;14(7):13102-13.
    PMID: 25051034 DOI: 10.3390/s140713102
    In this study, a potentiometric sensor composed of palm shell activated carbon modified with trioctylmethylammonium thiosalicylate (TOMATS) was used for the potentiometric determination of mercury ions in water samples. The proposed potentiometric sensor has good operating characteristics towards Hg (II), including a relatively high selectivity; a Nernstian response to Hg (II) ions in a concentration range of 1.0 × 10(-9) to 1.0 × 10(-2) M, with a detection limit of 1 × 10(-10) M and a slope of 44.08 ± 1.0 mV/decade; and a fast response time (~5 s). No significant changes in electrode potential were observed when the pH was varied over the range of 3-9. Additionally, the proposed electrode was characterized by good selectivity towards Hg (II) and no significant interferences from other cationic or anionic species.
    Matched MeSH terms: Limit of Detection
  6. Li Z, Gopinath SCB, Lakshmipriya T, Anbu P, Perumal V, Wang X
    Biomed Microdevices, 2020 Sep 17;22(4):67.
    PMID: 32940771 DOI: 10.1007/s10544-020-00522-3
    Nanoscale materials have been employed in the past 2 decades in applications such as biosensing, therapeutics and medical diagnostics due to their beneficial optoelectronic properties. In recent years, silver nanoparticles (AgNPs) have gained attention due to their higher plasmon excitation efficiency than gold nanoparticles, as proved by sharper and stronger plasmon resonance peaks. The current work is focused on utilizing self-assembled DNA-AgNPs on microdevices for the detection of gynecological cancers. Human papilloma virus (HPV) mostly spreads through sexual transmittance and can cause various gynecological cancers, including cervical, ovarian and endometrial cancers. In particular, oncogene E7 from the HPV strain 16 (HPV-16 E7) is responsible for causing these cancers. In this research, the target sequence of HPV-16 E7 was detected by an AgNP-conjugated capture probe on a dielectrode sensor. The detection limit was in the range between 10 and 100 aM (by 3σ estimation). The sensitivity of the AgNP-conjugated probe was 10 aM and similar to the sensitivity of gold nanoparticle conjugation sensors, and the mismatched control DNA failed to detect the target, proving selective HPV detection. Morphological assessments on the AgNPs and the sensing surfaces by high-resolution microscopy revealed the surface arrangement. This sensing platform can be expanded to develop sensors for the detection various clinically relevant targets.
    Matched MeSH terms: Limit of Detection
  7. Muda NE, Abu Bakar MA, Majlis BY
    Malays J Med Sci, 1999 Jul;6(2):12-6.
    PMID: 22589683 MyJurnal
    The development of antibody-based biosensor has grown steadily during recent years, and their use as a routine instrument in clinical application is not far from reality. This study has demonstrated the capability of conductometric sensor to quantitate human Follicle Stimulating Hormone (hFSH) from urine samples. The principles are adopted from Enzyme Linked Immunosorbent Assay (ELISA) technique. Self fabricated gold coated electrode was dipped in the microtiter well containing antibody-antigen complex. Substrate was added to the system to initiate a secondary reaction, which produced electroactive species and change the conductivity of the solution. The changes were proportional with the concentration of the hormone present. The results obtained correlate well with the conventional ELISA technique. Inter and intra assay variation (%CV) were under 6% and the lowest detection limit is 0.75 mIU/ml which was well under the physiological range of the hormone. This system offered advantages such as simplicity, reliability, minimal addition of reagents, freedom from turbidity and color problem, probability of miniaturizing the electrode thus minimizing the sample volume and the ability of on line data analysis. This study proved that Antigen-Antibody reaction via EIA could be detected electronically and it has a potential to be used as one of the measuring mode in clinical analysis.
    Matched MeSH terms: Limit of Detection
  8. Hajian R, Mehrayin Z, Mohagheghian M, Zafari M, Hosseini P, Shams N
    Mater Sci Eng C Mater Biol Appl, 2015 Apr;49:769-775.
    PMID: 25687007 DOI: 10.1016/j.msec.2015.01.072
    In this study, an electrochemical sensor was fabricated based on gold nanoparticles/ ethylenediamine/ multi-wall carbon-nanotubes modified gold electrode (AuNPs/en/MWCNTs/AuE) for determination of valrubicin in biological samples. Valrubicin was effectively accumulated on the surface of AuNPs/en/MWCNTs/AuE and produced a pair of redox peaks at around 0.662 and 0.578V (vs. Ag/AgCl) in citrate buffer (pH4.0). The electrochemical parameters including pH, buffer, ionic strength, scan rate and size of AuNPs have been optimized. There was a good linear correlation between cathodic peak current and concentration of valrubicin in the range of 0.5 to 80.0μmolL(-1) with the detection limit of 0.018μmolL(-1) in citrate buffer (pH4.0) and 0.1molL(-1) KCl. Finally, the constructed sensor was successfully applied for determination of valrubicin in human urine and blood serum. In further studies, the different sequences of single stranded DNA probes have been immobilized on the surface of AuNPs decorated on MWCNTs to study the interaction of oligonucleotides with valrubicin.
    Matched MeSH terms: Limit of Detection
  9. Miskam M, Abu Bakar NK, Mohamad S
    Talanta, 2014 Mar;120:450-5.
    PMID: 24468395 DOI: 10.1016/j.talanta.2013.12.037
    A solid phase extraction (SPE) method has been developed using a newly synthesized titanium (IV) butoxide-cyanopropyltriethoxysilane (Ti-CNPrTEOS) sorbent for polar selective extraction of aromatic amines in river water sample. The effect of different parameters on the extraction recovery was studied using the SPE method. The applicability of the sorbents for the extraction of polar aromatic amines by the SPE was extensively studied and evaluated as a function of pH, conditioning solvent, sample loading volume, elution solvent and elution solvent volume. The optimum experimental conditions were sample at pH 7, dichloromethane as conditioning solvent, 10 mL sample loading volume and 5 mL of acetonitrile as the eluting solvent. Under the optimum conditions, the limit of detection (LOD) and limit of quantification (LOQ) for solid phase extraction using Ti-CNPrTEOS SPE sorbent (0.01-0.2; 0.03-0.61 µg L(-1)) were lower compared with those achieved using Si-CN SPE sorbent (0.25-1.50; 1.96-3.59 µg L(-1)) and C18 SPE sorbent (0.37-0.98; 1.87-2.87 µg L(-1)) with higher selectivity towards the extraction of polar aromatic amines. The optimized procedure was successfully applied for the solid phase extraction method of selected aromatic amines in river water, waste water and tap water samples prior to the gas chromatography-flame ionization detector separation.
    Matched MeSH terms: Limit of Detection
  10. Abu-Bakar NB, Makahleh A, Saad B
    Talanta, 2014 Mar;120:47-54.
    PMID: 24468341 DOI: 10.1016/j.talanta.2013.11.081
    A fast and simple solvent microextraction technique using salting out-vortex-assisted liquid-liquid microextraction (salting out-VALLME) was developed for the extraction of furfurals (2-furfural (2-F), 3-furfural (3-F), 5-methylfurfural (5-MF) and 5-hydroxymethylfurfural (5-HMF)) and patulin (PAT) in fruit juice samples. The optimum extraction conditions for 5 mL sample were: extraction solvent, 1-hexanol; volume of extractant, 200 µL; vortex time, 45 s; salt addition, 20%. The simultaneous determination of the furfurals and PAT were investigated using high performance liquid chromatography coupled with diode array detector (HPLC-DAD). The separation was performed using ODS Hypersil C18 column (4.6 mm i.d × 250 mm, 5 μm) under gradient elution. The detection wavelengths used for all compounds were 280 nm except for 3-F (210 nm). The furfurals and PAT were successfully separated in less than 9 min. Good linearities (r(2)>0.99) were obtained within the range 1-5000 μg L(-1) for all compounds except for 3-F (10-5000 µg L(-1)) and PAT (0.5-100 μg L(-1)). The limits of detection (0.28-3.2 µg L(-1)) were estimated at S/N ratio of 3. The validated salting out-VALLME-HPLC method was applied for the analysis of furfurals and PAT in fruit juice samples (apple, mango and grape).
    Matched MeSH terms: Limit of Detection
  11. Kuan GC, Sheng LP, Rijiravanich P, Marimuthu K, Ravichandran M, Yin LS, et al.
    Talanta, 2013 Dec 15;117:312-7.
    PMID: 24209346 DOI: 10.1016/j.talanta.2013.09.016
    Epizootic ulcerative syndrome (EUS) is a devastating fish disease caused by the fungus, Aphanomyces invadans. Rapid diagnosis of EUS is needed to control and treat this highly invasive disease. The current diagnostic methods for EUS are labor intensive. We have developed a highly sensitive and specific electrochemical genosensor towards the 18S rRNA and internal transcribed spacer regions of A. invadans. Multiple layers of latex were synthesized with the help of polyelectrolytes, and labeled with gold nanoparticles to enhance sensitivity. The gold-latex spheres were functionalized with specific DNA probes. We describe here the novel application of this improved platform for detection of PCR product from real sample of A. invadans using a premix sandwich hybridization assay. The premix assay was easier, more specific and gave higher sensitivity of one log unit when compared to the conventional method of step-by-step hybridization. The limit of detection was 0.5 fM (4.99 zmol) of linear target DNA and 1 fM (10 amol) of PCR product. The binding positions of the probes to the PCR amplicons were optimized for efficient hybridization. Probes that hybridized close to the 5' or 3' terminus of the PCR amplicons gave the highest signal due to minimal steric hindrance for hybridization. The genosensor is highly suitable as a surveillance and diagnostic tool for EUS in the aquaculture industry.
    Matched MeSH terms: Limit of Detection
  12. Wong YF, Saad B, Makahleh A
    J Chromatogr A, 2013 May 17;1290:82-90.
    PMID: 23578483 DOI: 10.1016/j.chroma.2013.03.014
    A capillary electrophoresis (CE)-capacitively coupled contactless conductivity detection (C(4)D) method for the simultaneous separation of eleven underivatized fatty acids (FAs), namely, lauric, myristic, tridecanoic (internal standard), pentadecanoic, palmitic, stearic, oleic, elaidic, linoleic, linolenic and arachidic acids is described. The separation was carried out in normal polarity mode at 20 °C, 30 kV and using hydrodynamic injection (50 mbar for 1 s). The separation was achieved in a bare fused-silica capillary (70 cm × 75 μm i.d.) using a background electrolyte of methyl-β-cyclodextrin (~6 mM) and heptakis-(2,3,6-tri-O-methyl)-β-cyclodextrin (~8 mM) dissolved in a mixture of Na2HPO4/KH2PO4 (5 mM, pH 7.4):ACN:MeOH:n-octanol (3:4:2.5:0.5, v/v/v/v). C(4)D parameters were set at fixed amplitude of 100 V and frequency of 1000 kHz. The developed method was validated. Calibration curves of the ten FAs were well correlated (r(2)>0.99) within the range of 5-250 μg mL(-1) for lauric acid, and 3-250 μg mL(-1) for the other FAs. The method was simple and sensitive with detection limits (S/N=3) of 0.9-1.9 μg mL(-1) and good relative standard deviations of intra- and inter-day for migration times and peak areas (≤9.7%) were achieved. The method was applied to the determination of FAs in margarine samples. The proposed method offers distinct advantages over the GC and HPLC methods, especially in terms of simplicity (without derivatization) and sensitivity.
    Matched MeSH terms: Limit of Detection
  13. Sanagi MM, Loh SH, Wan Ibrahim WA, Hasan MN
    J Chromatogr A, 2012 Nov 2;1262:43-8.
    PMID: 23021646 DOI: 10.1016/j.chroma.2012.09.007
    Agarose film liquid phase microextraction (AF-LPME) procedure for the extraction and preconcentration of polycyclic aromatic hydrocarbons (PAHs) in water has been investigated. Agarose film was used for the first time as an interface between donor and acceptor phases in liquid phase microextraction which allowed for selective extraction of the analytes prior to gas chromatography-mass spectrometry. Using 1-octanol as acceptor phase, high enrichment factors in the range of 57-106 for the targeted analytes (fluorene, phenanthrene, fluoranthene and pyrene) were achieved. Under the optimum extraction conditions, the method showed good linearity in the range of 0.1-200 μgL(-1), good correlation coefficients in the range of 0.9963-0.9999, acceptable reproducibility (RSD 6.1-9.2%, n=3), low limits of detection (0.01-0.04 μgL(-1)) and satisfactory relative recoveries (92.9-104.7%). As the AF-LPME device was non-expensive, reuse or recycle of the film was not required, thus eliminating the possibility of analytes carry-over between runs. The AF-LPME technique is environment-friendly and compatible with the green chemistry concept as agarose is biodegradable polysaccharide extracted from seaweed and the procedure requires small volume of organic solvent and generates little waste. The validated method was successfully applied to the analysis of the four analytes in river water samples.
    Matched MeSH terms: Limit of Detection
  14. Hajeb P, Jinap S
    J Agric Food Chem, 2012 Jun 13;60(23):6069-76.
    PMID: 22515475 DOI: 10.1021/jf300582j
    An acidic solution containing mercury chelating agents to eliminate mercury in raw fish (mackerel) fillet was developed. The solution contained hydrochloric acid, sodium hydroxide, cysteine, EDTA, and NaCl. The optimum conditions for mercury reduction were achieved using response surface methodology (RSM) at cysteine concentration of 1.25%, EDTA of 275 mg/L, NaCl of 0.5%, pH of 3.75, and exposure time of 18 min. The optimized conditions produced a solution which can remove up to 91% mercury from raw fish fillet. Cysteine and EDTA were identified as potential chelating agents with the greatest potential for use. The solution can be employed in fish industries to reduce mercury in highly contaminated fish.
    Matched MeSH terms: Limit of Detection
  15. Jalili M, Jinap S
    PMID: 22971039 DOI: 10.1080/19440049.2012.719640
    A simple method for the reduction of aflatoxins B₁ (AFB₁), B₂ (AFB₂), G₁ (AFG₁), G₂ (AFG₂) and ochratoxin A (OTA) in white pepper was studied. Response surface methodology (RSM) was applied to determine the effect of four variables, which included time (20-60 min), temperature (30-70°C), calcium hydroxide (Ca(OH)₂) (0-1%) and hydrogen peroxide (H₂O₂) (1-3%) during the washing step of white pepper. The efficacy of the method was evaluated by the determination of mycotoxins by HPLC with fluorescence detection (FD). Statistical analysis showed that the experimental data could be adequately fitted into a second-order polynomial model, with a multiple regression coefficient (R²) in the range of 0.805-0.907 for AFG₂ and AFG₁, respectively. The optimal condition was 57.8 min, 62.0°C, of 0.6% (w/v) and 2.8% (v/v) for time, temperature, Ca(OH)₂ and H₂O₂ respectively. By applying the optimum condition, the mycotoxins reduction was found to be in the range of 68.5-100% for AFB₂ and AFG₁ respectively.
    Matched MeSH terms: Limit of Detection
  16. Wan Ibrahim WA, Veloo KV, Sanagi MM
    J Chromatogr A, 2012 Mar 16;1229:55-62.
    PMID: 22326188 DOI: 10.1016/j.chroma.2012.01.022
    A novel sol-gel hybrid methyltrimethoxysilane-tetraethoxysilane (MTMOS-TEOS) was produced and applied as sorbent for solid phase extraction (SPE). Five selected organophosphorus pesticides (OPPs) were employed as model compounds to evaluate the extraction performance of the synthesized sol-gel organic-inorganic hybrid MTMOS-TEOS. Analysis was performed using gas chromatography-mass spectrometry. Several important SPE parameters were optimized. Under the optimum extraction conditions, the method using the sol-gel organic-inorganic hybrid MTMOS-TEOS as SPE sorbent showed good linearity in the range of 0.001-1 μg L(-1), good repeatability (RSD 2.1-3.1%, n=5), low limits of detection at S/N=3 (0.5-0.9 pg mL(-1)) and limit of quantification (1-3 pg mL(-1), S/N=10). The performance of the MTMOS-TEOS SPE was compared to commercial C18 Supelclean SPE since C18 SPE is widely used for OPPs. The MTMOS-TEOS SPE method LOD was 500-600 × lower than the LOD of commercial C18 SPE. The LOD achieved with the sol-gel organic-inorganic hybrid MTMOS-TEOS SPE sorbent allowed the detection of these OPPs in drinking water well below the level set by European Union (EU) at 0.1 μg L(-1) of each pesticides. The developed MTMOS-TEOS SPE method was successfully applied to real sample analysis of the selected OPPs from several water samples and its application extended to the analysis of several fruits samples. Excellent recoveries and RSDs of the OPPs were obtained from the various water samples (recoveries: 97-111%, RSDs 0.4-2.8%, n=3) and fruit samples (recoveries: 96-111%), RSDs 1-4%, n=5) using the sol-gel organic-inorganic hybrid MTMOS-TEOS SPE sorbent. Recoveries and RSDs of OPPs from river water samples and fruit samples using C18 Supelclean SPE sorbent were 91-97%, RSD 0.9-2.6, n=3 and 86-96%, RSD 3-8%, n=5, respectively). The novel sol-gel hybrid MTMOS-TEOS SPE sorbent demonstrate the potential as an alternative inexpensive extraction sorbent for OPPs with higher sensitivity for the OPPs.
    Matched MeSH terms: Limit of Detection
  17. Foo Wong Y, Makahleh A, Al Azzam KM, Yahaya N, Saad B, Sulaiman SA
    Talanta, 2012 Aug 15;97:23-31.
    PMID: 22841043 DOI: 10.1016/j.talanta.2012.03.056
    A simple micellar electrokinetic chromatography (MEKC) method for the simultaneous determination of 2-furfural (2-F), 3-furfural (3-F), 5-methylfurfural (5-MF), 5-hydroxymethylfurfural (5-HMF), 2-furoic acid (2-FA) and 3-furoic acid (3-FA) in honey and vegetable oils is described. Parameters affecting the separation such as pH, buffer and surfactant concentrations, applied voltage, capillary temperature, injection time and capillary length were studied and optimized. The separation was carried out in normal polarity mode at 20 °C, 22 kV and using hydrodynamic injection (17 s). The separation was achieved in a bare fused-silica capillary (46 cm × 50 μm i.d.) with a background electrolyte of 75 mM phosphoric acid (pH 7.3), containing 200 mM of sodium dodecyl sulphate (SDS). The detection wavelengths were at 200 nm (2-FA and 3-FA) and 280 nm (2-F, 3-F, 5-MF, 5-HMF). The furfurals were well separated in less than 20 min. The method was validated in terms of linearity, limit of detection and quantitation, precision and recoveries. Calibration curves of the six furfurals were well correlated (r(2)>0.991) within the range 1-25 μg mL(-1). Relative standard deviations of intra- and inter-day migration times and corrected peak areas ≤9.96% were achieved. The limit of detection (signal:noise, 3) was 0.33-0.70 μg mL(-1) whereas the limit of quantitation (signal:noise, 10) was 1.00-2.12 μg mL(-1). The method was applied to the determination of furanic compounds in honeys and vegetable oils (palm, walnut, grape seed and rapeseed). The effects of thermal treatment and gamma irradiation on the formation of the furanic compounds in honey were also investigated.
    Matched MeSH terms: Limit of Detection
  18. Wee Ling JL, Khan A, Saad B, Ab Ghani S
    Talanta, 2012 Jan 15;88:477-83.
    PMID: 22265529 DOI: 10.1016/j.talanta.2011.11.018
    A new poly(4-vinyl pyridine) (P4VP) based cadmium (Cd)-ion selective electrode (ISE) was developed. The 4-vinyl pyridine (4VP) was first polymerized electrochemically on the surface of graphite, later characterized by FTIR, SEM/EDX and then optimized as ISE for Cd. At optimal pH 6.4, slope of 27.7±0.8mVdecade(-1), linear concentration range of 1×10(-7) to 1.0×10(-1)M Cd(2+) and limit of detection (S/N=3) of 2.51×10(-8)M were obtained. The ISE was very selective towards Cd(2+), with K(pot)<1×10(-2) in the presence of the usual cations and anions in water samples. Response time and shelf life of less than 1min and 90 days, respectively, were observed. Its application was tested in various types of samples.
    Matched MeSH terms: Limit of Detection
  19. Soleimany F, Jinap S, Rahmani A, Khatib A
    PMID: 21337232 DOI: 10.1080/19440049.2010.551547
    A new method for the simultaneous quantification of 12 mycotoxins was developed and optimized using reverse phase high performance liquid chromatography (RP-HPLC) with a photodiode array (PDA) and fluorescence detector (FLD), a photochemical reactor for enhanced detection (PHRED) and post-column derivatization. The mycotoxins included aflatoxins (AFB(1), AFB(2), AFG(1), and AFG(2)), ochratoxin A (OTA), zearalenone (ZEA), deoxynivalenol (DON), fumonisins (FB(1), FB(2), and FB(3)), T-2 and HT-2 toxins. A double sample extraction with a phosphate-buffered saline solution (PBS) and methanol was used for co-extraction of mycotoxins, and a multifunctional immunoaffinity column was used for cleanup. Optimum conditions for separation of the mycotoxins were obtained to separate 12 mycotoxins in FLD and PDA chromatograms with a high resolution. The method gave recoveries in the range 72-111% when applied to spiked corn samples. The limits of detection (LOD) were 0.025 ng/g for AFB(1) and AFG(1), 0.012 ng/g for AFB(2) and AFG(2), 0.2 ng/g for OTA, 1.5 ng/g for ZEA, 6.2 ng/g for FB(1), FB(3) and HT-2 toxin, 9.4 ng/g for FB(2) and T-2 toxin, and 18.7 ng/g for DON. In addition, the limits of quantification (LOQ) ranged from 0.04 ng/g for AFB(2) and AFG(2) to 62 ng/g for DON. The method was successfully applied to the determination of these mycotoxins in 45 cereal samples obtained from the Malaysian market. The results indicated that the method can be applied for the multi-mycotoxin determination of cereals.
    Matched MeSH terms: Limit of Detection
  20. Khayoon WS, Saad B, Salleh B, Ismail NA, Abdul Manaf NH, Abdul Latiff A
    Anal Chim Acta, 2010 Oct 29;679(1-2):91-7.
    PMID: 20951862 DOI: 10.1016/j.aca.2010.09.008
    The development of a reversed phase high performance liquid chromatography fluorescence method for the determination of the mycotoxins fumonisin B(1) and fumonisin B(2) by using silica-based monolithic column is described. The samples were first extracted using acetonitrile:water (50:50, v/v) and purified by using a C(18) solid phase extraction-based clean-up column. Then, pre-column derivatization for the analyte using ortho-phthaldialdehyde in the presence of 2-mercaptoethanol was carried out. The developed method involved optimization of mobile phase composition using methanol and phosphate buffer, injection volume, temperature and flow rate. The liquid chromatographic separation was performed using a reversed phase Chromolith(®) RP-18e column (100 mm × 4.6 mm) at 30 °C and eluted with a mobile phase of a mixture of methanol and phosphate buffer pH 3.35 (78:22, v/v) at a flow rate of 1.0 mL min(-1). The fumonisins separation was achieved in about 4 min, compared to approximately 20 min by using a C(18) particle-packed column. The fluorescence excitation and emission were at 335 nm and 440 nm, respectively. The limits of detections were 0.01-0.04 μg g(-1) fumonisin B(1) and fumonisin B(2), respectively. Good recoveries were found for spiked samples (0.1, 0.5, 1.5 μg g(-1) fumonisins B(1) and B(2)), ranging from 84.0 to 106.0% for fumonisin B(1) and from 81.0 to 103.0% for fumonisin B(2). Fifty-three samples were analyzed including 39 food and feeds and 14 inoculated corn and rice. Results show that 12.8% of the food and feed samples were contaminated with fumonisin B(1) (range, 0.01-0.51 μg g(-1)) and fumonisin B(2) (0.05 μg g(-1)). The total fumonisins in these samples however, do not exceed the legal limits established by the European Union of 0.8 μg g(-1). Of the 14 inoculated samples, 57.1% contained fumonisin B(1) (0.16-41.0 μg g(-1)) and fumonisin B(2) (range, 0.22-50.0 μg g(-1)). Positive confirmation of selected samples was carried out using liquid chromatography-tandem mass spectrometry, using triple quadrupole analyzer and operated in the multiple reaction monitoring mode.
    Matched MeSH terms: Limit of Detection
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links