Displaying publications 241 - 260 of 276 in total

Abstract:
Sort:
  1. Verma R, Boshoff HIM, Arora K, Bairy I, Tiwari M, Varadaraj BG, et al.
    Drug Dev Res, 2020 May;81(3):315-328.
    PMID: 31782209 DOI: 10.1002/ddr.21623
    A new series of novel triclosan (2,4,4'-trichloro-2'-hydroxydiphenylether) analogues were designed, synthesized, and screened for their in vitro antimycobacterial and antibacterial activities. Most of the compounds showed significant activity against Mycobacterium tuberculosis H37Rv strain with minimum inhibitory concentration (MIC) values in 20-40 μM range in GAST/Fe medium when compared with triclosan (43 μM) in the first week of assay, and after additional incubation, seven compounds, that is, 2a, 2c, 2g, 2h, 2i, 2j, and 2m, exhibited MIC values at the concentration of 20-40 μM. The compounds also showed more significant activity against Bacillus subtilis and Staphylococcus aureus. The synthesized compounds showed druggable properties, and the predicted ADME (absorption, distribution, metabolism, and excretion) properties were within the acceptable limits. The in silico studies predicted better interactions of compounds with target protein residues and a higher dock score in comparison with triclosan. Molecular dynamics simulation study of the most active compound 2i was performed in order to further explore the stability of the protein-ligand complex and the protein-ligand interaction in detail.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  2. Orban AM, Eichberg J, Marner M, Breuer S, Patras MA, Mettal U, et al.
    Chembiochem, 2024 Nov 04;25(21):e202400168.
    PMID: 38738599 DOI: 10.1002/cbic.202400168
    Higher fungi of the genus Armillaria belonging to the phylum Basidiomycota produce bioactive sesquiterpenoid aryl esters called melleolides. A bioactivity-guided discovery process led to the identification of the new melleolide 5'-methoxyarmillane (1) in organic extracts from the mycelium of Armillaria ostoyae. Remarkably, supplementation of rapeseed oil to the culture medium potato dextrose broth increased the production of 1 by a factor of six during the course of the 35 days fermentation. Compound 1 was isolated and its structure elucidated by UHPLC-QTOF-HR-MS/MS and NMR spectroscopy. It showed toxicity against Madin-Darby canine kidney II (MDCK II, IC50 19.2 μg/mL, 44.1 μM) and human lung cancer Calu-3 cells (IC50 15.2 μg/mL, 34.9 μM) as well as moderate bioactivity against Mycobacterium tuberculosis (MIC 8 mg/mL, 18.4 μM) and Mycobacterium smegmatis (MIC 16 mg/mL, 36.8 μM), but not against Staphylococcus aureus, Escherichia coli, Candida albicans, and Septoria tritici. No inhibitory effects of 1 against the influenza viruses H3N2, H1N1pdm, B/Malaysia, and B/Massachusetts were observed.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  3. Bijle MN, Pichika MR, Mak KK, Parolia A, Babar MG, Yiu C, et al.
    Molecules, 2021 Oct 31;26(21).
    PMID: 34771014 DOI: 10.3390/molecules26216605
    This study's objective was to examine L-arginine (L-arg) supplementation's effect on mono-species biofilm (Streptococcus mutans/Streptococcus sanguinis) growth and underlying enamel substrates. The experimental groups were 1%, 2%, and 4% arg, and 0.9% NaCl was used as the vehicle control. Sterilised enamel blocks were subjected to 7-day treatment with test solutions and S. mutans/S. sanguinis inoculum in BHI. Post-treatment, the treated biofilms stained for live/dead bacterial cells were analysed using confocal microscopy. The enamel specimens were analysed using X-ray diffraction crystallography (XRD), Raman spectroscopy (RS), and transmission electron microscopy (TEM). The molecular interactions between arg and MMP-2/MMP-9 were determined by computational molecular docking and MMP assays. With increasing arg concentrations, bacterial survival significantly decreased (p < 0.05). The XRD peak intensity with 1%/2% arg was significantly higher than with 4% arg and the control (p < 0.05). The bands associated with the mineral phase by RS were significantly accentuated in the 1%/2% arg specimens compared to in other groups (p < 0.05). The TEM analysis revealed that 4% arg exhibited an ill-defined shape of enamel crystals. Docking of arg molecules to MMPs appears feasible, with arg inhibiting MMP-2/MMP-9 (p < 0.05). L-arginine supplementation has an antimicrobial effect on mono-species biofilm. L-arginine treatment at lower (1%/2%) concentrations exhibits enamel hydroxyapatite stability, while the molecule has the potential to inhibit MMP-2/MMP-9.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  4. Ibrahim MH, Chee Kong Y, Mohd Zain NA
    Molecules, 2017 Oct 12;22(10).
    PMID: 29023367 DOI: 10.3390/molecules22101623
    A randomized complete block (RCBD) study was designed to investigate the effects of cadmium (Cd) and copper (Cu) on the growth, bioaccumulation of the two heavy metals, metabolite content and antibacterial activities in Gyanura procumbens (Lour.) Merr. Nine treatments including (1) control (no Cd and Cu); (2) Cd 2 = cadmium 2 mg/L; (3) Cd 4 = cadmium 4 mg/L; (4) Cu 70 = copper 70 mg/L; (5) Cu 140 = copper 140 mg/L); (6) Cd 2 + Cu 70 = cadmium 2 mg/L + copper 70 mg/L); (7) Cd 2 + Cu 140 = cadmium 2 mg/L + copper 70 mg/L); (8) Cd 4 + Cu 70 = cadmium 4 mg/L+ copper 70 mg/L and (9) Cd 4 + Cu 140 = cadmium 4 mg/L + copper 140 mg/L) were evaluated in this experiment. It was found that the growth parameters (plant dry weight, total leaf area and basal diameter) were reduced with the exposure to increased concentrations of Cd and Cu and further decreased under interaction between Cd and Cu. Production of total phenolics, flavonoids and saponin was observed to be reduced under combined Cd and Cu treatment. The reduction in the production of plant secondary metabolites might be due to lower phenyl alanine lyase (PAL) activity under these conditions. Due to that, the 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant potential (FRAP) and antibacterial activities was also found to be reduced by the combined treatments. The current experiments show that the medicinal properties of G. procumbens are reduced by cadmium and copper contamination. The accumulation of heavy metal also was found to be higher than the safety level recommended by the WHO in the single and combined treatments of Cd and Cu. These results indicate that exposure of G. procumbens to Cd and Cu contaminated soil may potentially harm consumers due to bioaccumulation of metals and reduced efficacy of the herbal product.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  5. Sarwar A, Katas H, Samsudin SN, Zin NM
    PLoS One, 2015;10(4):e0123084.
    PMID: 25928293 DOI: 10.1371/journal.pone.0123084
    Recently, the attention of researchers has been drawn toward the synthesis of chitosan derivatives and their nanoparticles with enhanced antimicrobial activities. In this study, chitosan derivatives with different azides and alkyne groups were synthesized using click chemistry, and these were further transformed into nanoparticles by using the ionotropic gelation method. A series of chitosan derivatives was successfully synthesized by regioselective modification of chitosan via an azide-alkyne click reaction. The amino moieties of chitosan were protected during derivatization by pthaloylation and subsequently unblocked at the end to restore their functionality. Nanoparticles of synthesized derivatives were fabricated by ionic gelation to form complexes of polyanionic penta-sodium tripolyphosphate (TPP) and cationic chitosan derivatives. Particle size analysis showed that nanoparticle size ranged from 181.03 ± 12.73 nm to 236.50 ± 14.32 nm and had narrow polydispersity index and positive surface charge. The derivatives and corresponding nanoparticles were evaluated in vitro for antibacterial and antifungal activities against three gram-positive and gram-negative bacteria and three fungal strains, respectively. The minimum inhibitory concentration (MIC) of all derivatives ranged from 31.3 to 250 µg/mL for bacteria and 188 to1500 µg/mL for fungi and was lower than that of native chitosan. The nanoparticles with MIC ranging from 1.56 to 25 µg/mLfor bacteria and 94 to 750 µg/mL for fungi exhibited higher activity than the chitosan derivatives. Chitosan O-(1-methylbenzene) triazolyl carbamate and chitosan O-(1-methyl phenyl sulfide) triazolyl carbamate were the most active against the tested bacterial and fungal strains. The hemolytic assay on erythrocytes and cell viability test on two different cell lines (Chinese hamster lung fibroblast cells V79 and Human hepatic cell line WRL68) demonstrated the safety; suggesting that these derivatives could be used in future medical applications. Chitosan derivatives with triazole functionality, synthesized by Huisgen 1,3-dipolar cycloaddition, and their nanoparticles showed significant enhancement in antibacterial and antifungal activities in comparison to those associated with native, non-altered chitosan.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  6. Yit KH, Zainal-Abidin Z
    Curr Top Med Chem, 2024;24(13):1158-1184.
    PMID: 38584545 DOI: 10.2174/0115680266294573240328050629
    AIMS: There has been increased scientific interest in bioactive compounds and their synthetic derivatives to promote the development of antimicrobial agents that could be used sustainably and overcome antibiotic resistance.

    METHODS: We conducted this scoping review to collect evidence related to the antimicrobial potential of diverse natural compounds from Zingiberaceae plants and their synthetic derivatives. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Extension for Scoping Reviews guidelines. The literature search was conducted using PubMed, Web of Science and Scopus electronic databases for relevant studies published from 2012 to 2023. A total of 28 scientific studies fulfilled the inclusion criteria. The authors of these studies implemented in vitro and in silico methods to examine the antimicrobial potency and underlying mechanisms of the investigated compounds.

    RESULT: The evidence elucidates the antimicrobial activity of natural secondary metabolites from Zingiberaceae species and their synthetic derivatives against a broad panel of gram-positive and gram-negative bacteria, fungi and viruses.

    CONCLUSION: To date, researchers have proposed the application of bioactive compounds derived from Zingiberaceae plants and their synthetic analogues as antimicrobial agents. Nevertheless, more investigations are required to ascertain their efficacy and to broaden their commercial applicability.

    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  7. Haque RA, Choo SY, Budagumpi S, Iqbal MA, Al-Ashraf Abdullah A
    Eur J Med Chem, 2015 Jan 27;90:82-92.
    PMID: 25461313 DOI: 10.1016/j.ejmech.2014.11.005
    A series of benzimidazole-based N-heterocyclic carbene (NHC) proligands {1-benzyl-3-(2-methylbenzyl)-benzimidazolium bromide/hexafluorophosphate (1/4), 1,3-bis(2-methylbenzyl)-benzimidazolium bromide/hexafluorophosphate (2/5) and 1,3-bis(3-(2-methylbenzyl)-benzimidazolium-1-ylmethylbenzene dibromide/dihexafluorophosphate (3/6)} has been synthesized by the successive N-alkylation method. Ag complexes {1-benzyl-3-(2-methylbenzyl)-benzimidazol-2-ylidenesilver(I) hexafluorophosphate (7), 1,3-bis(2-methylbenzyl)-benzimidazol-2-ylidenesilver(I) hexafluorophosphate (8) and 1,3-bis(3-(2-methylbenzyl)-benzimidazol-2-ylidene)-1-ylmethylbenzene disilver(I) dihexafluorophosphate (9)} of NHC ligands have been synthesized by the treatment of benzimidazolium salts with Ag2O at mild reaction conditions. Both, NHC proligands and Ag-NHC complexes have been characterized by (1)H and (13)C{(1)H} NMR and FTIR spectroscopy and elemental analysis technique. Additionally, the structure of the NHC proligand 5 and the mononuclear Ag complexes 7 and 8 has been elucidated by the single crystal X-ray diffraction analysis. Both the complexes exhibit the same general structural motif with linear coordination geometry around the Ag centre having two NHC ligands. Preliminary in vitro antibacterial potentials of reported compounds against a Gram negative (Escherichia coli) and a Gram positive (Bacillus subtilis) bacteria evidenced the higher activity of mononuclear silver(I) complexes. The anticancer studies against the human derived colorectal cancer (HCT 116) and colorectal adenocarcinoma (HT29) cell lines using the MTT assay method, revealed the higher activity of Ag-NHC complexes. The benzimidazolium salts 4-6 and Ag-NHC complexes 7-9 displayed the following IC50 values against the HCT 116 and HT29 cell lines, respectively, 31.8 ± 1.9, 15.2 ± 1.5, 4.8 ± 0.6, 10.5 ± 1.0, 18.7 ± 1.6, 1.20 ± 0.3 and 245.0 ± 4.6, 8.7 ± 0.8, 146.1 ± 3.1, 7.6 ± 0.7, 5.5 ± 0.8, 103.0 ± 2.3 μM.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  8. Lim CL, Nogawa T, Uramoto M, Okano A, Hongo Y, Nakamura T, et al.
    J Antibiot (Tokyo), 2014 Apr;67(4):323-9.
    PMID: 24496142 DOI: 10.1038/ja.2013.144
    Two novel quinomycin derivatives, RK-1355A (1) and B (2), and one known quinomycin derivative, UK-63,598 (3), were isolated from a microbial metabolites fraction library of Streptomyces sp. RK88-1355 based on Natural Products Plot screening. The structural elucidation of 1 and 2 was established through two-dimensional NMR and mass spectrometric measurements. They belong to a class of quinomycin antibiotics family having 3-hydroxyquinaldic acid and a sulfoxide moiety. They are the first examples for natural products as a quinoline type quinomycin having a sulfoxide on the intramolecular cross-linkage. They showed potent antiproliferative activities against various cancer cell lines and they were also found to exhibit moderate antibacterial activity.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  9. Alshawsh MA, Abdulla MA, Ismail S, Amin ZA, Qader SW, Hadi HA, et al.
    Molecules, 2012;17(5):5385-95.
    PMID: 22569417 DOI: 10.3390/molecules17055385
    Orthosiphon stamineus is considered an important traditional folk medicine. In this study ethanol and aqueous extracts of O. stamineus were evaluated in vitro for their antioxidant, antimicrobial as well as for their immunomodulatory properties on human peripheral blood mononuclear cells (PBMCs). The DPPH radical scavenging method was used for the determination of antioxidant activity, while the antibacterial efficacy was investigated by both disc diffusion method and Minimum Inhibitory Concentration (MIC) against four bacterial strains (Gram-positive and Gram-negative). Furthermore, the immunomodulatory potential of the extracts was investigated through the MTT assay. Aqueous extract of O. stamineus exhibited significant free radical scavenging activity with IC₅₀ 50 9.6 µg/mL, whereas the IC₅₀ for the ethanol extract was 21.4 µg/mL. The best antimicrobial activity was shown by the aqueous extract of O. stamineus against Staphylococcus aureus, with inhibition zone of 10.5 mm and MIC value 1.56 mg/mL. Moreover, the results observed from the MTT assay showed that both plant extracts stimulated the PBMCs proliferation in vitro in a concentration-dependent manner, but the aqueous extract has remarkable activity against PBMCs. These findings indicate that O. stamineus showed high antioxidant activity and may be considered as an immunomodulatory agent.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  10. Dharmalingam K, Tan BK, Mahmud MZ, Sedek SA, Majid MI, Kuah MK, et al.
    J Ethnopharmacol, 2012 Jan 31;139(2):657-63.
    PMID: 22193176 DOI: 10.1016/j.jep.2011.12.016
    Swietenia macrophylla or commonly known as big leaf mahogany, has been traditionally used as an antibacterial and antifungal agent.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  11. Shameli K, Bin Ahmad M, Zargar M, Yunus WM, Ibrahim NA, Shabanzadeh P, et al.
    Int J Nanomedicine, 2011;6:271-84.
    PMID: 21499424 DOI: 10.2147/IJN.S16043
    Silver nanoparticles (AgNPs) of a small size were successfully synthesized using the wet chemical reduction method into the lamellar space layer of montmorillonite/chitosan (MMT/Cts) as an organomodified mineral solid support in the absence of any heat treatment. AgNO3, MMT, Cts, and NaBH4 were used as the silver precursor, the solid support, the natural polymeric stabilizer, and the chemical reduction agent, respectively. MMT was suspended in aqueous AgNO3/Cts solution. The interlamellar space limits were changed (d-spacing = 1.24-1.54 nm); therefore, AgNPs formed on the interlayer and external surface of MMT/Cts with d-average = 6.28-9.84 nm diameter. Characterizations were done using different methods, ie, ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence spectrometry, and Fourier transform infrared spectroscopy. Silver/montmorillonite/chitosan bionanocomposite (Ag/MMT/Cts BNC) systems were examined. The antibacterial activity of AgNPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria, ie, Escherichia coli, E. coli O157:H7, and Pseudomonas aeruginosa by the disc diffusion method using Mueller Hinton agar at different sizes of AgNPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biological research and biomedical applications, including surgical devices and drug delivery vehicles.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry*
  12. Boldbaatar D, Gunasekera S, El-Seedi HR, Göransson U
    J Nat Prod, 2015 Nov 25;78(11):2545-51.
    PMID: 26509914 DOI: 10.1021/acs.jnatprod.5b00463
    The Ricinus communis biomarker peptides RCB-1 to -3 comprise homologous sequences of 19 (RCB-1) or 18 (RCB-2 and -3) amino acid residues. They all include four cysteine moieties, which form two disulfide bonds. However, neither the 3D structure nor the biological activity of any of these peptides is known. The synthesis of RCB-1, using microwave-assisted, Fmoc-based solid-phase peptide synthesis, and a method for its oxidative folding are reported. The tertiary structure of RCB-1, subsequently established using solution-state NMR, reveals a twisted loop fold with antiparallel β-sheets reinforced by the two disulfide bonds. Moreover, RCB-1 was tested for antibacterial, antifungal, and cytotoxic activity, as well as in a serum stability assay, in which it proved to be remarkably stable.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  13. Choudhary S, Jain A, Amin MCIM, Mishra V, Agrawal GP, Kesharwani P
    Colloids Surf B Biointerfaces, 2016 May 01;141:268-277.
    PMID: 26859118 DOI: 10.1016/j.colsurfb.2016.01.048
    The study was intended to develop a new intra-gastric floating in situ microballoons system for controlled delivery of rabeprazole sodium and amoxicillin trihydrate for the treatment of peptic ulcer disease. Eudragit S-100 and hydroxypropyl methyl cellulose based low density microballoons systems were fabricated by employing varying concentrations of Eudragit S-100 and hydroxypropyl methyl cellulose, to which varying concentrations of drug was added, and formulated by stirring at various speed and time to optimize the process and formulation variable. The formulation variables like concentration and ratio of polymers significantly affected the in vitro drug release from the prepared floating device. The validation of the gastro-retentive potential of the prepared microballoons was carried out in rabbits by orally administration of microballoons formulation containing radio opaque material. The developed formulations showed improved buoyancy and lower ulcer index as compared to that seen with plain drugs. Ulcer protective efficacies were confirmed in ulcer-bearing mouse model. In conclusion, greater compatibility, higher gastro-retention and higher anti-ulcer activity of the presently fabricated formulations to improve potential of formulation for redefining ulcer treatment are presented here. These learning exposed a targeted and sustained drug delivery potential of prepared microballoons in gastric region for ulcer therapeutic intervention as corroborated by in vitro and in vivo findings and, thus, deserves further attention for improved ulcer treatment.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  14. Bayrami A, Ghorbani E, Rahim Pouran S, Habibi-Yangjeh A, Khataee A, Bayrami M
    Ultrason Sonochem, 2019 Nov;58:104613.
    PMID: 31450359 DOI: 10.1016/j.ultsonch.2019.104613
    The leaf extract of a medicinally important plant, watercress (Nasturtium officinale), was obtained through an ultrasound-facilitated method and utilized for the preparation of ZnO nanoparticles via a joint ultrasound-microwave assisted procedure. The characteristics of the extract enriched nanoparticles (Ext/ZnO) were determined by SEM, TEM, XRD, EDX, BET, FTIR, TGA, and UV-Vis DRS analyses and compared to that of ZnO prepared in the absence of the extract (ZnO). The presence of carbon and carbonaceous bonds, changes in the morphology, size, band gap energy, and weight-decay percentage were a number of differences between ZnO and Ext/ZnO that confirmed the link of extract over nanoparticles. Ext/ZnO, watercress leaf extract, ZnO, and insulin therapies were administrated to treat alloxan-diabetic Wister rats and their healing effectiveness results were compared to one another. The serum levels of the main diabetic indices such as insulin, fasting blood glucose, and lipid profile (total triglyceride, total cholesterol, and high-density lipoprotein cholesterol) were estimated for healthy, diabetic, and the rats rehabilitated with the studied therapeutic agents. The watercress extract-enriched ZnO nanoparticles offered the best performance and suppressed the diabetic status of rats. Moreover, both ZnO samples satisfactory inhibited the activities of Staphylococcus aureus and Escherichia coli bacteria. Based on the results, the application of Nasturtium officinale leaf extract can strongly empower ZnO nanoparticles towards superior antidiabetic and enhanced antibacterial activities.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  15. Mohammadi Arvanag F, Bayrami A, Habibi-Yangjeh A, Rahim Pouran S
    Mater Sci Eng C Mater Biol Appl, 2019 Apr;97:397-405.
    PMID: 30678925 DOI: 10.1016/j.msec.2018.12.058
    Green synthesis of ZnO nanoparticles (NPs) using the plants' extract and their potential application have driven a tremendous interest in recent years. This study reports a green microwave-assisted method for synthesis of ZnO NPs using Silybum marianum L. seed extract. Characteristics of the as-prepared sample was explored in terms of crystalline phase, morphology, composition, surface area, optical, and thermal properties. The particles of the biosynthesized sample (ZnO/extract) had smaller sizes than the chemically produced one (ZnO). The existence of biomolecules from Silybum marianum L seed extract linked to the ZnO/extract sample was approved by various analyses. The ZnO/extract sample was used for treating alloxan-induced diabetic rats and its efficiency was compared with ZnO, extract, and insulin treatments. For this purpose, the levels of blood glucose, insulin, total cholesterol, total triglyceride, and high-density lipoprotein were measured before and after treating with the studied treatment agents and compared with each other. Moreover, the antibacterial activities of both ZnO samples were investigated against E. coli to assess their potential antibacterial application. From the results, ZnO/extract NPs represented an outstanding performance in overcoming the diabetic disorders and good antibacterial activity against the studied bacteria.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  16. Abudula T, Gauthaman K, Mostafavi A, Alshahrie A, Salah N, Morganti P, et al.
    Sci Rep, 2020 11 24;10(1):20428.
    PMID: 33235239 DOI: 10.1038/s41598-020-76971-w
    Non-healing wounds have placed an enormous stress on both patients and healthcare systems worldwide. Severe complications induced by these wounds can lead to limb amputation or even death and urgently require more effective treatments. Electrospun scaffolds have great potential for improving wound healing treatments by providing controlled drug delivery. Previously, we developed fibrous scaffolds from complex carbohydrate polymers [i.e. chitin-lignin (CL) gels]. However, their application was limited by solubility and undesirable burst drug release. Here, a coaxial electrospinning is applied to encapsulate the CL gels with polycaprolactone (PCL). Presence of a PCL shell layer thus provides longer shelf-life for the CL gels in a wet environment and sustainable drug release. Antibiotics loaded into core-shell fibrous platform effectively inhibit both gram-positive and -negative bacteria without inducting observable cytotoxicity. Therefore, PCL coated CL fibrous gel platforms appear to be good candidates for controlled drug release based wound dressing applications.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  17. Surendra TV, Mohana Roopan S, Khan MR
    Biotechnol Prog, 2019 07;35(4):e2823.
    PMID: 31017346 DOI: 10.1002/btpr.2823
    The rare earth metal oxide nanoparticles such as gadolinium oxide nanoparticles (Gd2 O3 NPs) have been synthesized by green synthesis process using methanolic extract of Moringa oleifera (M oleifera) peel. In this process, the Gd2 O3 NPs formation was observed at 280-300 nm in UV-Vis spectroscopy. The XRD pattern of the synthesized Gd2 O3 NPs was exactly matched with JCPDS No 3-065-3181which confirms the crystalline nature of Gd2 O3 NPs. In addition, Energy-dispersive X-ray spectroscopy (EDX) analysis was stated that Gd and O elements were present as 70.31 and 29.69%, respectively in Gd2 O3 NPs. The SEM and TEM analysis were said Gd2 O3 NPs are in rod shape and 26 ± 2 nm in size. Further the synthesized Gd2 O3 NPs were confirmed by X-ray photoemission spectroscopy (XPS). The synthesized Gd2 O3 NPs were further examined for anti-fungal activity against Alternaria saloni (A saloni) and Sclerrotium rolfsii (S rolfsii) and it showed moderate activity. Also, Gd2 O3 NPs evaluated as good antibacterial agent against different Gram +ve and Gram -ve bacteria. Moreover, the toxicity of the Gd2 O3 NPs on red blood cells (RBCs) of the human blood was determined using hemolytic assay, the obtained results were stated the synthesized Gd2 O3 NPs are nontoxic to the human erythrocytes. The photocatalytic activity against malachite green (MG) dye was tested and confirmed as 92% of dye was degraded within 2 hr by Gd2 O3 NPs. The results were stated the green synthesized Gd2 O3 NPs are good anti-fungal agents, nontoxic and we can use as a photocatalyst. Copyright © 2019 John Wiley & Sons, Ltd.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry*
  18. Yu L, Lu M, Zhang W, Alarfaj AA, Hirad AH, Zhang H
    Microb Pathog, 2020 Apr;141:103960.
    PMID: 31953224 DOI: 10.1016/j.micpath.2019.103960
    BACKGROUND: Mycoplasma pneumoniae (MP) is a common cause of community-acquired pneumonia (CAP) among the children and adults that results upper and lower respiratory tract infections.

    OBJECTIVE: This study was aimed to inspect the ameliorative action of A. chinensis synthesized ZnONPs against M. pneumoniae infected pneumonia mice model.

    MATERIALS AND METHODS: ZnO NPs was synthesized from Albizia chinensis bark extract and characterized by UV-Vis spectroscopy, Fourier Transform Infrared (FTIR), Transmission Electron Microscopy (TEM), energy dispersive X-ray (EDX) and atomic force microscope (AFM) analyses. The antibacterial effectual of synthesized ZnONPs were examined against clinical pathogens. The pneumonia was induced to BALB/c mice via injecting the M. pneumoniae and treated with synthesized ZnONPs, followed by the total protein content, total cell counts and inflammatory mediators level was assessed in the BALF of experimental animals. The Histopathological investigation was done in the lung tissues of test animals.

    RESULTS: The outcomes of this work revealed that the formulated ZnONPs was quasi-spherical, radial and cylindrical; the size was identified as 116.5 ± 27.45 nm in diameter. The in vitro antimicrobial potential of formulated ZnO-NPs displayed noticeable inhibitory capacity against the tested fungal and bacterial strains. The administration of synthesized ZnO-NPs in MP infected mice model has significantly reduced the levels of total protein, inflammatory cells, inflammatory cytokines such as IL-1, IL-6, IL-8, tumour necrosis factor-alpha (TNF-a) and transforming growth factor (TGF). Besides, the histopathological examination of MP infected mice lung tissue showed the cellular arrangements were effectively retained after administration of synthesized ZnO-NPs.

    CONCLUSION: In conclusion, synthesized ZnO-NPs alleviate pneumonia progression via reducing the level of inflammatory cytokines and inflammatory cells in MP infected mice model.

    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  19. Ong JS, Taylor TD, Wong CB, Khoo BY, Sasidharan S, Choi SB, et al.
    J Biotechnol, 2019 Jul 20;300:20-31.
    PMID: 31095980 DOI: 10.1016/j.jbiotec.2019.05.006
    Increasing levels of antibiotic resistance in pathogens, including Staphylococcus aureus, remains a serious problem for public health, leading to the need for better alternative antimicrobial strategies. The antimicrobial proteins produced by Lactobacillus plantarum USM8613 attributed to its anti-staphylococcal activity were identified as extracellular transglycosylase and glyceraldehyde-3-phosphate dehydrogenase (GADPH), both with different mechanisms of action. Extracellular transglycosylase, which contains a LysM domain, exerts a cell wall-mediated killing mechanism, while GADPH penetrates into S. aureus cells and subsequently induces the overexpression of autolysis regulators, resulting in S. aureus autolysis. Both extracellular transglycosylase and GADPH exert anti-inflammatory effects in S. aureus-infected HaCaT cells by reducing the expression and production of TLR-2, hBDs and various pro-inflammatory cytokines (IL-1α, IL-1β, IL-6, TNF-α, and IL-8). Taken together, extracellular transglycosylase and GADPH produced by L. plantarum USM8613 could potentially be applied as an alternative therapeutic agent to treat S. aureus skin infections and promote skin health.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  20. Teh CH, Nazni WA, Nurulhusna AH, Norazah A, Lee HL
    BMC Microbiol, 2017 Feb 16;17(1):36.
    PMID: 28209130 DOI: 10.1186/s12866-017-0936-3
    BACKGROUND: Antimicrobial resistance is currently a major global issue. As the rate of emergence of antimicrobial resistance has superseded the rate of discovery and introduction of new effective drugs, the medical arsenal now is experiencing shortage of effective drugs to combat diseases, particularly against diseases caused by the dreadful multidrug-resistant strains, such as the methicillin-resistant Staphylococcus aureus (MRSA). The ability of fly larvae to thrive in septic habitats has prompted us to determine the antibacterial activity and minimum inhibitory concentrations (MICs) of larval extract of flies, namely Lucilia cuprina, Sarcophaga peregrina and Musca domestica against 4 pathogenic bacteria [Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Pseudomonas aeruginosa and Escherichia coli] via a simple and sensitive antibacterial assay, resazurin-based turbidometric (TB) assay as well as to demonstrate the preliminary chemical profile of larval extracts using gas chromatography-mass spectrophotometry (GC-MS).

    RESULTS: The resazurin-based TB assay demonstrated that the L. cuprina larval extract was inhibitory against all tested bacteria, whilst the larval extract of S. peregrina and M. domestica were only inhibitory against the MRSA, with a MIC of 100 mg ml(-1). Subsequent sub-culture of aliquots revealed that the larval extract of L. cuprina was bactericidal against MRSA whilst the larval extracts of S. peregrina and M. domestica were bacteriostatic against MRSA. The GC-MS analysis had quantitatively identified 20 organic compounds (fatty acids or their derivatives, aromatic acid esters, glycosides and phenol) from the larval extract of L. cuprina; and 5 fatty acid derivatives with known antimicrobial activities from S. peregrina and M. domestica.

    CONCLUSION: The resazurin-based turbidometric assay is a simple, reliable and feasible screening assay which evidently demonstrated the antibacterial activity of all fly larval extracts, primarily against the MRSA. The larval extract of L. cuprina exerted a broad spectrum antibacterial activity against all tested bacteria. The present study revealed probable development and use of novel and effective natural disinfectant(s) and antibacterial agent(s) from flies and efforts to screen more fly species for antibacterial activity using resazurin-based TB assay should be undertaken for initial screening for subsequent discovery and isolation of potential novel antimicrobial substances, particularly against the multi-drug resistant strains.

    Matched MeSH terms: Anti-Bacterial Agents/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links