Displaying publications 221 - 240 of 1298 in total

Abstract:
Sort:
  1. Hawa Ismail, Ng, S.K., Hing, H.L., Normalawati Shamsudin, Ridzwan Hashim
    MyJurnal
    The calcareous rings of two species of local sea cucumbers, Stichopus hermanni Semper and Holothuria atra Jaeger, were located, dissected, exposed and recorded. The calcareous rings of both species each composed of ten plates knit together by connective tissues. The radial plate of H. atra was a square with a notch at the anterior part whereas in S. hermanni it was squarish consisting of 4 ridges in the anterior part with a notch at the posterior part. The interradial plates of both species were smaller than the radial plates. A ridge was present at the anterior part of the interradial plate in H. atra. In S. hermanii, the ridge at the anterior part of the interradial was thin and prominent. Under the scanning electron microscope the calcareous rings from the two species exhibited a mosaic of small, numerous spicules bound to each other.
    Matched MeSH terms: Microscopy, Electron, Scanning
  2. Issa, R., Hamdan, N.A., Raj, A.S.S., Noh, M.F.M.
    ASM Science Journal, 2011;5(1):36-42.
    MyJurnal
    Researchers have developed and modified DNA biosensor techniques to provide a fast, simple and sensitive method for detection of human diseases, bacterial food contamination, forensic and environmental research. This study describes the physical characterization of screen-printed carbon electrodes using the scanning electron microscope.
    Matched MeSH terms: Microscopy, Electron, Scanning
  3. Wan Md Zin Wan Yunus, Tajau, Rida, Khairul Zaman Mohd Dahlan, Mohd Hilmi Mahmood, Kamaruddin Hashim, Mohd Yusof Hamzah
    MyJurnal
    The use of microemulsion in the development of nanoparticle based on acrylated palm oil product is demonstrated. Acr ylated palm oil microemulsions were prepared using ionic surfactant. Combination methods of emulsion polymerization and radiation crosslinking were applied to the microemulsion system for synthesizing nanoparticle. The ionizing radiat ion technique was introduced to generate a crosslinking reaction in the development of nanoparticle. The nanoparticle was evaluated in terms of particle diameter, surface charge, pH and conductance. Their image was captured using Tra nsmission electron microscopy (TEM). Results show that the size, charge and shape of the particles are influenced by c oncentration of surfactants, monomer concentration, radiation dose and time of storage. The study showed a promising method to produced nanoparticle. This nano-sized product has the potential to be utilized as controlled-drug-release-carrier.
    Matched MeSH terms: Microscopy, Electron
  4. Nasri A. Hamid, Yusof Abdullah, Mohd Sharul Nizam Asbullah
    MyJurnal
    Among the challenges for superconducting devices to be applied in industry are the need for high transport critical current density (Jr) and sustainability of the device in different environment. For superconducting material to maintain high 4, effective flux pinning centers are needed. The addition of small size MgO particles in bulk Bi2Sr2CaCu2O8 (Bi-2212) superconductor has been proven to enhance the effective flux pinning centers in the superconducting material. Nevertheless, the flux pinning properties of the superconducting materials may change if they are exposed to radioactive environment. Electron irradiation is one of the common techniques that can be used to study the impact of irradiation on superconducting materials. In this work, a small amount of nanosize MgO particles were used as the flux pinning centers for Bi-2212 superconducting material. The Bi-2212/MgO composite was heat treated and followed by partial melting and slow cooling. Some of the samples were subjected to electron irradiation using the facility at the Malaysian Nuclear Agency. Characterizations of non-irradiated and irradiated samples were performed via X-ray Diffraction Patterns (XRD), Scanning Electron Microscopy (SEM) and measurements of J, dependence on temperature in self-field. Higher J, indicates better flux pinning properties in irradiated superconductor composite. This is achieved if defects with larger radius with dimension comparable to the coherence length of the superconducting material were created. On the other hand, decreased in Je indicates ineffective flux pinning and this is attributed to the overlapping of defects that break the superconducting region. Our study showed that electron irradiation deteriorated the flux pinning properties of the Bi-2212/MgO superconductor composite.
    Matched MeSH terms: Microscopy, Electron, Scanning
  5. Hanafi Ismail, Rohani Abdul Majid, Razaina Mat Taib
    MyJurnal
    Linear density polyethylene (LDPE)/thermoplastic sago starch (TPSS), blended with and without the addition of compatibilizer [Polyethylene-grafted-Maleic Anhydride, (PE-g-MA)] were prepared for soil burial test. The test was conducted in the natural soil environment for 3 and 6 months. Different loading of TPSS (10, 20, 30, 40, and 50 wt. %) were used in this study. After soil burial, the blends were evaluated for their tensile properties and scanning electron microscopy (SEM) to observe the surface morphology properties after the test. For LDPE/TPSS, it was observed that the tensile strength decreased with the increase of soil burial time, as well as Young modulus and elongation at break (EB). The LDPE/TPSS/PE-g-MA also showed the same trend for the tensile properties, but with higher properties as compared to uncompatibilized blends. The tensile properties also decreased with the increase in the TPSS loading for both the LDPE/TPSS and LDPE/TPSS/PE-g-MA. Meanwhile,
    the scanning electron microscopy (SEM) on the blend surfaces after the soil burial test showed that degradability increased with the increase in the exposure time as well as the TPSS loading.
    Matched MeSH terms: Microscopy, Electron, Scanning
  6. Mohd. Azam Mohd. Adnan, Cheong, K.Y., Hutagalung, Sabar D.
    MyJurnal
    Silicon nanowires were synthesized on Si substrates (111) via thermal evaporation using AuPd thin layer catalyst. Pre cleaned of Si wafer was used as a substrate to assemble the nanostructure products. In this work, the effect of growth temperature that ranging from 800 to 1000°C on the formation of silicon nanowires studied extensively. X-ray diffraction and field emission scanning electron microscope were employed to characterize the structures and morphology of nanowires. Vertical aligned silicon nanowires have been successfully grown on Si substrates at 900 and 1000°C. At 1100°C, the high aspect ratio of silicon nanowires can be produced but the formation density is low. The presence of AuPd catalyst on the tip of nanowires, it is expected that VLS is the most suitable to explain the growth mechanism of obtained SiNWs. The crystalline structure of SiNWs was proved by XRD data.
    Matched MeSH terms: Microscopy, Electron, Scanning
  7. Noraishah Othman, Muhd Noor Md Yunus, Siti Kartom Kamarudin, Abd Halim Shamsuddin, Siti Rozaimah, Zahirah Yaakob
    MyJurnal
    Production of carbon dioxide from degraded woods especially Karas or Aquilariella Malaccensis using integrated pyrolysis-combustion is important for radiocarbon dating application. The effects of pyrolysis temperatures (300-400 0 C), retention times (20-35 minutes) and flow rates of argon (400- 1000 ml/min) on the production of carbon dioxide were studied. The experiments were arranged according to a 2 3 response surface central composite statistical design (CSD). This response surface methodology (RSM) was used to assess factor interactions and empirical models regarding carbon dioxide yield. The optimized yield of carbon dioxide was 82.57% for Karas and the optimum reaction conditions are 300 0 C of pyrolysis temperature, 20 minutes retention time and 982ml/min flow rates of argon. Scanning electron microscope (SEM) and X-ray Diffraction (XRD) were conducted to assess the morphological characteristics of the woods and to look at the potential crystalline structure produced after the process took place, respectively.
    Matched MeSH terms: Microscopy, Electron, Scanning
  8. Syazwan Hafiz Mohd, Wan Elhami Wan Omar, Ai-Hong Chen
    MyJurnal
    This paper examines the chemical elements used as colour additives in cosmetic coloured contact lenses (Cos-CCL) using Field Emission Scanning Electron Microscope equipped with Energy Dispersive X-ray Spectroscopy (FESEM-EDX) analysis. The samples comprised two different Cos-CCL brands and colours (sample A1-black iris colour & B1-gray iris colour) with their respective clear contact lens counterparts as controls (sample A2 & B2). The parameters of Cos-CCL were observed carefully so that they resembled their respective controls. All the samples were analysed for chemical element characterisation by using EDX spectroscopy surface mapping analysis on both front and back surfaces. EDX spectroscopy point analysis was done on cross-section surface of Cos-CCL when colour additive pattern could not be detected by FESEM on either surface. FESEM-EDX spectroscopy analysis has revealed iron element in the colour additives of the A1 sample and aluminium elements in the B2 sample. These two elements were not present in the respective control samples. It can be concluded that iron and aluminium elements are exclusively attributed to the colour additive in Cos-CCL samples. It is important for manufacturers of Cos-CCL to disclose information of their products and create greater awareness on the risks facing users.
    Matched MeSH terms: Microscopy, Electron, Scanning
  9. Ridzuan, P.M., Nasir Mohamad, Salwani Ismail, Nor Iza A. Rahman, Sanusi, N.A., Rabiatul Adawiyah Umar, et al.
    MyJurnal
    Trichophyton rubrum is a common pathogenic fungal species that is responsible for causing infection on
    human skin, hair and nail. The antifungal-resistant strains complicate the treatment regime.
    Hydroxychavicol (HC) is one of the main compounds from Piper betel leaf that have antifungal potential and
    its mechanism of action has not been studied yet. The objective of this preliminary study to determine the
    antifungal properties of HC against T. rubrum using transmission electron microscope (TEM) on gross and
    ultrastructure of T. rubrum hypha. T. rubrum was treated with HC and miconazole (MI) at concentrations of
    1.25, 2.5, 5 and 10 mg/mL for 1, 3, 5 and 7 days continuously. Generally, fungi structures became more
    severely damaged at increasing treatment duration. Microscopically, the fungi’s cell wall treated with HC
    showed a rough surface, shrinkage and demolition similar to the MI treated group. The fungi organelles were
    also demolished and disorganized. This study revealed that HC has the ability to inhibit T. rubrum growth
    and has potential to be an antifungal agent for skin infections.
    Matched MeSH terms: Microscopy, Electron, Transmission
  10. Mohd Fudzi L, Zainal Z, Lim HN, Chang SK, Holi AM, Sarif Mohd Ali M
    Materials (Basel), 2018 Apr 29;11(5).
    PMID: 29710822 DOI: 10.3390/ma11050704
    Despite its large band gap, ZnO has wide applicability in many fields ranging from gas sensors to solar cells. ZnO was chosen over other materials because of its large exciton binding energy (60 meV) and its stability to high-energy radiation. In this study, ZnO nanorods were deposited on ITO glass via a simple dip coating followed by a hydrothermal growth. The morphological, structural and compositional characteristics of the prepared films were analyzed using X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM), and ultraviolet-visible spectroscopy (UV-Vis). Photoelectrochemical conversion efficiencies were evaluated via photocurrent measurements under calibrated halogen lamp illumination. Thin film prepared at 120 °C for 4 h of hydrothermal treatment possessed a hexagonal wurtzite structure with the crystallite size of 19.2 nm. The average diameter of the ZnO nanorods was 37.7 nm and the thickness was found to be 2680.2 nm. According to FESEM images, as the hydrothermal growth temperature increases, the nanorod diameter become smaller. Moreover, the thickness of the nanorods increase with the growth time. Therefore, the sample prepared at 120 °C for 4 h displayed an impressive photoresponse by achieving high current density of 0.1944 mA/cm².
    Matched MeSH terms: Microscopy, Electron, Scanning
  11. Azmer MI, Aziz F, Ahmad Z, Raza E, Najeeb MA, Fatima N, et al.
    Talanta, 2017 Nov 01;174:279-284.
    PMID: 28738579 DOI: 10.1016/j.talanta.2017.06.016
    This research work demonstrates compositional engineering of an organic-inorganic hybrid nano-composites for modifying absolute threshold of humidity sensors. Vanadyl-2,9,16,23-tetraphenoxy-29H,31H-phthalocyanine (VOPcPhO), an organic semiconductor, doped with Titanium-dioxide nanoparticles (TiO2NPs) has been employed to fabricate humidity sensors. The morphology of the VOPcPhO:TiO2nano-composite films has been analyzed by atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The sensors have been examined over a wide range of relative humidity i.e. 20-99% RH. The sensor with TiO2(90nm) shows reduced sensitivity-threshold and improved linearity. The VOPcPhO:TiO2(90nm) nano-composite film is comprised of uniformly distributed voids which makes the surface more favorable for adsorption of moisture content from environment. The VOPcPhO:TiO2nano-composite based sensor demonstrates remarkable improvement in the sensing parameter when equated with VOPcPhO sensors.
    Matched MeSH terms: Microscopy, Electron, Scanning
  12. Moradihamedani P, Abdullah AH
    Water Sci Technol, 2017 May;75(10):2422-2433.
    PMID: 28541950 DOI: 10.2166/wst.2017.122
    Neat cellulose acetate (CA) and CA/polysulfone (PSf) blend ultrafiltration membranes in the presence of polyvinylpyrrolidone as a pore former were prepared via a phase inversion technique. The prepared membranes were characterized by Fourier transform infrared, scanning electron microscopy, mechanical strength, water content, porosity, permeate flux and heavy metals (Pb2+, Cd2+, Zn2+ and Ni2+) rejection to comprehend the impact of polymer blend composition and additive on the properties of the modified membranes. The water flux expanded by increasing of PSf content in the polymer composition. CA/PSf (60/40) had the highest flux among prepared membranes. Prepared blend membranes were able to remove heavy metals from water in the following order: Pb2+ > Cd2+ > Zn2+ > Ni2+. The CA/PSf (80/20) blend membrane had great performance among prepared membranes due to the high heavy metals removal and permeate flux.
    Matched MeSH terms: Microscopy, Electron, Scanning
  13. Sadri R, Hosseini M, Kazi SN, Bagheri S, Zubir N, Solangi KH, et al.
    J Colloid Interface Sci, 2017 Oct 15;504:115-123.
    PMID: 28531649 DOI: 10.1016/j.jcis.2017.03.051
    In this study, we propose an innovative, bio-based, environmentally friendly approach for the covalent functionalization of multi-walled carbon nanotubes using clove buds. This approach is innovative because we do not use toxic and hazardous acids which are typically used in common carbon nanomaterial functionalization procedures. The MWCNTs are functionalized in one pot using a free radical grafting reaction. The clove-functionalized MWCNTs (CMWCNTs) are then dispersed in distilled water (DI water), producing a highly stable CMWCNT aqueous suspension. The CMWCNTs are characterized using Raman spectroscopy, X-ray photoelectron spectroscopy and transmission electron microscopy. The electrostatic interactions between the CMWCNT colloidal particles in DI water are verified via zeta potential measurements. UV-vis spectroscopy is also used to examine the stability of the CMWCNTs in the base fluid. The thermo-physical properties of the CMWCNT nano-fluids are examined experimentally and indeed, this nano-fluid shows remarkably improved thermo-physical properties, indicating its superb potential for various thermal applications.
    Matched MeSH terms: Microscopy, Electron, Transmission
  14. Azlisham, N.A.F., Abdul Rahman, F.S., Mohamad, D.
    MyJurnal
    The objective of the present study is to evaluate the effect of incorporation of 3- acetylcoumarin (3-AC), an antibacterial agent, on the mechanical and surface morphology of glass ionomer cement (GIC). A conventional GIC, Fuji II LC, was used as a control. 3-AC was incorporated into GIC during its manipulation at percentage of 2% and 5% (wt/wt). Flexural strength of the specimens were analysed using Shimadzu AGX-Plus while morphological evaluation of the specimens were observed using Scanning Electron Microscope (SEM). Oneway analysis (ANOVA) with post-hoc Bonferroni multiple-range test was used to determine the significant differences among the groups. Statistically, the incorporation of 2% (wt/wt) of 3-AC into GIC showed a significantly lower flexural strength (p
    Matched MeSH terms: Microscopy, Electron, Scanning
  15. Radzali, O., Zaleha, M., Nor Fatiha, I., Ooi, C.H.
    MyJurnal
    Glass-ceramics are a group of materials that takes advantage of the various glass-forming methods before they are subsequently heat-treated in a controlled manner to effect nucleation and crystallization to produce crystalline materials. The production of glassceramic materials is to overcome the low mechanical strength in pure glassy materials. In this work, a study on the crystallisation of a soda-lime-silica glass was undertaken to ascertain how the processing parameters affect the crystallization of such glasses, viz. either via a single or two-step heat-treatment procedure, as well as the effect of soaking duration at the heat-treatment temperature. A soda-lime-silica glass system was chosen because the raw materials for producing such glasses are readily available and can be considered to be the cheapest. The glass produced was examined by thermal analysis to determine the nucleation and crystallization temperatures before they were heat-treated using a single-step and a two-stage heat-treatment procedures. The resultant glassceramics produced were characterized using x-ray diffraction as well as by scanning electron microscopy. The results thus obtained showed that a two-stage heat-treatment procedure is more successful in producing a well-crystallized glass-ceramic product.
    Matched MeSH terms: Microscopy, Electron, Scanning
  16. Behjat, T., Russly, A.R., Luqman, C.A., Yus, A.Y., Nor Azowa, I.
    MyJurnal
    Several blends of cellulose derived from bast part of kenaf (Hibiscus cannabinus L.) plant, with different thermoplastics, low density polyethylene (LDPE) and high density polyethylene (HDPE), were prepared by a melt blending machine. Polyethylene glycol (PEG) was used as plasticizer. Biodegradability of these blends was measured using soil burial test in order to study the rates of biodegradation of these polymer blends. It was found that the cellulose/LDPE and cellulose/HDPE blends were biodegradable in a considerable rate. The bio-composites with high content of cellulose had higher degradation rate. In addition, biodegradability of the bio-composites made up using PEG was superior to those of the bio-composites fabricated without PEG, due to the improved wetting of the plasticizer in the matrix polymer. The results were also supported by the scanning electron microscopy (SEM).
    Matched MeSH terms: Microscopy, Electron, Scanning
  17. Butcher AL, Koh CT, Oyen ML
    J Mech Behav Biomed Mater, 2017 May;69:412-419.
    PMID: 28208112 DOI: 10.1016/j.jmbbm.2017.02.007
    Electrospinning is a simple and efficient process for producing sub-micron fibres. However, the process has many variables, and their effects on the non-woven mesh of fibres is complex. In particular, the effects on the mechanical properties of the fibre meshes are poorly understood. This paper conducts a parametric study, where the concentration and bloom strength of the gelatin solutions are varied, while all electrospinning process parameters are held constant. The effects on the fibrous meshes are monitored using scanning electron microscopy and mechanical testing under uniaxial tension. Mesh mechanical properties are relatively consistent, despite changes to the solutions, demonstrating the robustness of electrospinning. The gel strength of the solution is shown to have a statistically significant effect on the morphology, stiffness and strength of the meshes, while the fibre diameter has surprisingly little influence on the stiffness of the meshes. This experimental finding is supported by finite element analysis, demonstrating that the stiffness of the meshes is controlled by the volume fraction, rather than fibre diameter. Our results demonstrate the importance of understanding how electrospinning parameters influence the pore size of the meshes, as controlling fibre diameter alone is insufficient for consistent mechanical properties.
    Matched MeSH terms: Microscopy, Electron, Scanning
  18. Doris M, Aziz F, Alhummiany H, Bawazeer T, Alsenany N, Mahmoud A, et al.
    Nanoscale Res Lett, 2017 Dec;12(1):67.
    PMID: 28116608 DOI: 10.1186/s11671-017-1851-0
    In this study, low-bandgap polymer poly{[4,4-bis(2-ethylhexyl)-cyclopenta-(2,1-b;3,4-b')dithiophen]-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl} (PCPDTBT) nanostructures have been synthesized via a hard nanoporous alumina template of centrifugal process. Centrifuge has been used to infiltrate the PCPDTBT solution into the nanoporous alumina by varying the rotational speeds. The rotational speed of centrifuge is directly proportional to the infiltration force that penetrates into the nanochannels of the template. By varying the rotational speed of centrifuge, different types of PCPDTBT nanostructures are procured. Infiltration force created during the centrifugal process has been found a dominant factor in tuning the morphological, optical, and structural properties of PCPDTBT nanostructures. The field emission scanning electron microscopy (FESEM) images proved the formation of nanotubes and nanowires. The energy-dispersive X-ray spectroscope (EDX) analysis showed that the nanostructures were composed of PCPDTBT with complete dissolution of the template.
    Matched MeSH terms: Microscopy, Electron, Scanning
  19. Nicholas AF, Hussein MZ, Zainal Z, Khadiran T
    Nanomaterials (Basel), 2018 Sep 05;8(9).
    PMID: 30189654 DOI: 10.3390/nano8090689
    The preparation of activated carbon using palm kernel shells as the precursor (PKSAC) was successfully accomplished after the parametric optimization of the carbonization temperature, carbonization holding time, and the ratio of the activator (H₃PO₄) to the precursor. Optimization at 500 °C for 2 h of carbonization with 20% H₃PO₄ resulted in the highest surface area of the activated carbon (C20) of 1169 m² g-1 and, with an average pore size of 27 Å. Subsequently, the preparation of shape-stabilized phase change material (SSPCM-C20) was done by the encapsulation of n-octadecane into the pores of the PKSAC, C20. The field emission scanning electron microscope images and the nitrogen gas adsorption-desorption isotherms show that n-octadecane was successfully encapsulated into the pores of C20. The resulting SSPCM-C20 nano-composite shows good thermal reliability which is chemically and thermally stable and can stand up to 500 melting and freezing cycles. This research work provided a new strategy for the preparation of SSPCM material for thermal energy storage application generated from oil palm waste.
    Matched MeSH terms: Microscopy, Electron, Scanning
  20. Berkathullah M, Farook MS, Mahmoud O
    Biomed Res Int, 2018;2018:4072815.
    PMID: 30276206 DOI: 10.1155/2018/4072815
    The effectiveness of remineralizing agents in reducing dentine permeability by tubule occlusion using fluid filtration device functioning at 100 cmH2O (1.4 psi) pressure and SEM/EDX analysis were evaluated and compared. Seventy (n = 70) dentine discs of 1±0.2 mm width were prepared from sound permanent human molars. Fifty (n = 50) dentine discs were randomly divided into 5 groups (n = 10): Group 1: GC Tooth Mousse Plus (Recaldent GC Corporation Tokyo, Japan), Group 2: Clinpro™ White Varnish (3M ESPE, USA), Group 3: Duraphat® Varnish (Pharbil Waltrop GmbH, Germany), Group 4: Colgate Sensitive Pro-Relief™ dentifrice (Colgate Palmolive, Thailand), and Group 5: Biodentine™ (Septodont/UK). Dentine permeability was measured after treatment application at 10 minutes, artificial saliva immersion at 7 days, and citric acid challenge for 3 minutes. Data were analyzed by two-way repeated measures ANOVA. Dentine specimens (n = 20) were used for SEM/EDX analyses to obtain qualitative results on dentine morphology and surface deposits. Each treatment agent significantly reduced dentine permeability immediately after treatment application and created precipitates on treated dentine surfaces. All agents increased permeability values after 7 days of artificial saliva immersion except Clinpro White Varnish and Biodentine. Clinpro White Varnish exhibited significant resistance to acid challenge compared to others. Colgate Sensitive Pro-Relief dentifrice has a dual mechanism of action in reducing the dentine sensitivity.
    Matched MeSH terms: Microscopy, Electron, Scanning
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links