Displaying publications 221 - 240 of 537 in total

Abstract:
Sort:
  1. Ahmed, H.O., Hassan, Z., Abdul Manap, M.N.
    MyJurnal
    Slaughtering is the first step in meat processing. It involves killing an animal for the production of meat. Effectiveness of slaughter is determined by the amount of blood removed from the animal. This study aimed to compare the chemical changes and microbiological quality of broiler chicken meat slaughtered by Halal and Non-Halal slaughter methods during refrigerated storage. A total of sixty (60) broiler chickens were slaughtered by: i) Neck cutting (NC) - by severing the jugular veins, carotid arteries, trachea and the oesophagus according to the Islamic ritual method of slaughter and (ii) Neck poking (NP) - by poking the neck of the bird with a sharp object. Residual blood was quantified by measuring the haem iron content in the breast meat samples. Storage stability of chicken meat was evaluated by measuring the extent of lipid oxidation determined by thiobarbituric acid reactive substances (TBARS) and by assessing the microbiological quality of the meat. Haem iron content decreased significantly (P0.05) on chicken meat lipid oxidation at 1, 3, and 9 day of storage at 4oC. However, at 5 and 7 day of storage, significant differences (P
    Matched MeSH terms: Lipids
  2. Zainuddin MF, Fai CK, Ariff AB, Rios-Solis L, Halim M
    Microorganisms, 2021 Jan 27;9(2).
    PMID: 33513696 DOI: 10.3390/microorganisms9020251
    The production of lipids from oleaginous yeasts involves several stages starting from cultivation and lipid accumulation, biomass harvesting and finally lipids extraction. However, the complex and relatively resistant cell wall of yeasts limits the full recovery of intracellular lipids and usually solvent extraction is not sufficient to effectively extract the lipid bodies. A pretreatment or cell disruption method is hence a prerequisite prior to solvent extraction. In general, there are no recovery methods that are equally efficient for different species of oleaginous yeasts. Each method adopts different mechanisms to disrupt cells and extract the lipids, thus a systematic evaluation is essential before choosing a particular method. In this review, mechanical (bead mill, ultrasonication, homogenization and microwave) and nonmechanical (enzyme, acid, base digestions and osmotic shock) methods that are currently used for the disruption or permeabilization of oleaginous yeasts are discussed based on their principle, application and feasibility, including their effects on the lipid yield. The attempts of using conventional and "green" solvents to selectively extract lipids are compared. Other emerging methods such as automated pressurized liquid extraction, supercritical fluid extraction and simultaneous in situ lipid recovery using capturing agents are also reviewed to facilitate the choice of more effective lipid recovery methods.
    Matched MeSH terms: Lipids
  3. Chen C, Mohamad Razali UH, Saikim FH, Mahyudin A, Mohd Noor NQI
    Foods, 2021 Mar 23;10(3).
    PMID: 33807100 DOI: 10.3390/foods10030689
    Morus alba L. (M. alba) is a highly adaptable plant that is extensively incorporated in many traditional and Ayurveda medications. Various parts of the plant, such as leaves, fruits, and seeds, possess nutritional and medicinal value. M. alba has abundant phytochemicals, including phenolic acids, flavonoids, flavonols, anthocyanins, macronutrients, vitamins, minerals, and volatile aromatic compounds, indicating its excellent pharmacological abilities. M. alba also contains high nutraceutical values for protein, carbohydrates, fiber, organic acids, vitamins, and minerals, as well as a low lipid value. However, despite its excellent biological properties and nutritional value, M. alba has not been fully considered as a potential functional food ingredient. Therefore, this review reports on the nutrients and bioactive compounds available in M. alba leaves, fruit, and seeds; its nutraceutical properties, functional properties as an ingredient in foodstuffs, and a microencapsulation technique to enhance polyphenol stability. Finally, as scaling up to a bigger production plant is needed to accommodate industrial demand, the study and limitation on an M. alba upscaling process is reviewed.
    Matched MeSH terms: Lipids
  4. Md Nor S, Ding P
    Food Res Int, 2020 08;134:109208.
    PMID: 32517939 DOI: 10.1016/j.foodres.2020.109208
    Nowadays, many of the tropical fruits have been commercialized worldwide due to increasing demand. In 2018, global tropical fruit has reached an unprecedented peak of 7.1 million tonnes. As such, a lot of large scale farming has been initiated to cultivate the fruit for commercialization. The nature of tropical fruit is perishable make the fruit easily undergo post-harvest losses especially when the fruit travels in a long distance for distribution. Losses of tropical fruit is estimated around 18-28% after harvesting. Then, the losses will continually develop during the trading process. Applying fruit coating on the fruit can minimize substantial privation. This article compendiously reviews the needs of coating and discuss different types of coating materials. The efficiency of different coating materials; polysaccharide, protein, lipid and composite based coating on tropical fruit is highlighted. There are various types of coating available for major fruit such as banana, mango, pineapple and avocado that can effectively extend the post-harvest life, minimize water loss, reduce chilling injuries and fight against post-harvest disease. Coating from minor fruit such as durian, rambutan, passion-fruit and mangosteen are still limited especially made from lipid and protein coating. In choosing the most appropriate coating for tropical, the nature of fruit needs to be understood. In addition, the chemistry of coating components and techniques of application is important in modulating the fruit quality.
    Matched MeSH terms: Lipids
  5. Nik Mohamed Kamal NNS, Awang RAR, Mohamad S, Shahidan WNS
    Front Physiol, 2020;11:587381.
    PMID: 33329037 DOI: 10.3389/fphys.2020.587381
    Chronic periodontitis (CP) is an oral cavity disease arising from chronic inflammation of the periodontal tissues. Exosomes are lipid vesicles that are enriched in specific microRNAs (miRNAs), potentially providing a disease-specific diagnostic signature. To assess the value of exosomal miRNAs as biomarkers for CP, 8 plasma- and 8 salivary-exosomal miRNAs samples were profiled using Agilent platform (comparative study). From 2,549 probed miRNAs, 33 miRNAs were significantly down-regulated in CP as compared to healthy plasma samples. Whereas, 1,995 miRNAs (1,985 down-regulated and 10 up-regulated) were differentially expressed in the CP as compared to healthy saliva samples. hsa-miR-let-7d [FC = -26.76; AUC = 1; r = -0.728 [p-value = 0.04]), hsa-miR-126-3p (FC = -24.02; AUC = 1; r = -0.723 [p-value = 0.043]) and hsa-miR-199a-3p (FC = -22.94; AUC = 1; r = -0.731 [p-value = 0.039]) are worth to be furthered studied for plasma-exosomal samples. Meanwhile, for salivary-exosomal samples, hsa-miR-125a-3p (FC = 2.03; AUC = 1; r = 0.91 [p-value = 0.02]) is worth to be furthered studied. These miRNAs are the reliable candidates for the development of periodontitis biomarker, as they were significantly expressed differently between CP and healthy samples, have a good discriminatory value and strongly correlate with the mean of PPD. These findings highlight the potential of exosomal miRNAs profiling in the diagnosis from both sourced as well as provide new insights into the molecular mechanisms involved in CP.
    Matched MeSH terms: Lipids
  6. Lee YY, Tang TK, Chan ES, Phuah ET, Lai OM, Tan CP, et al.
    PMID: 33480262 DOI: 10.1080/10408398.2021.1873729
    Structured lipid is a type of modified form of lipid that is "fabricated" with the purpose to improve the nutritional and functional properties of conventional fats and oils derived from animal and plant sources. Such healthier choice of lipid received escalating attention from the public for its capability to manage the rising prevalence of metabolic syndrome. Of which, medium-chain triacylglycerol (MCT) and medium-and long-chain triacylglycerol (MLCT) are the few examples of the "new generation" custom-made healthful lipids which are mainly composed of medium chain fatty acid (MCFA). MCT is made up exclusively of MCFA whereas MLCT contains a mixture of MCFA and long chain fatty acid (LCFA), respectively. Attributed by the unique metabolism of MCFA which is rapidly metabolized by the body, MCFA and MCT showed to acquire multiple physiological and functional properties in managing and reversing certain health disorders. Several chemically or enzymatically oils and fats modification processes catalyzed by a biological or chemical catalyst such as acidolysis, interesterification and esterification are adopted to synthesis MCT and MLCT. With their purported health benefits, MCT and MLCT are widely being used as nutraceutical in food and pharmaceutical sectors. This article aims to provide a comprehensive review on MCT and MLCT, with an emphasis on the basic understanding of its structures, properties, unique metabolism; the current status of the touted health benefits; latest routes of production; its up-to-date applications in the different food systems; relevant patents filed and its drawbacks.
    Matched MeSH terms: Lipids
  7. Syarifah-Noratiqah SB, Fairus S, Zulfarina MS, Nasrullah Z, Qodriyah HMS, Naina-Mohamed I
    Front Vet Sci, 2020;7:303.
    PMID: 32775343 DOI: 10.3389/fvets.2020.00303
    Background: Accumulative evidences on the beneficial effects of palm oil are progressively reported; however, there are still several controversies related to their effects on the risks of cardiovascular disease (CVD). This review explores the effects of palm oil and its liquid fraction namely palm olein, which is commonly used as cooking oil on four lipid parameters; total cholesterol (TC), triglyceride (TG), high-density lipoprotein-cholesterol (HDL-C) and low-density lipoprotein-cholesterol (LDL-C), which play an important role as CVD-related biomarkers. A systematic review of the literature was conducted to identify the relevant studies on palm oil and the lipid parameters specifically focusing on the in-vivo animal model. Methods: A comprehensive search was conducted in Medline via EBSCOhost, Medline via OVID and Scopus. Studies were limited to the English language published between the years of 2000 and 2019. The main inclusion criteria were as follows: (1) Study with in-vivo animal experiments [the animal should be limited to mammals] (2) Study should have evaluated the effects of palm oil or palm olein on plasma or serum lipid parameter (3) Study should have used palm oil or palm olein in the form of pure or refined oil (4) The treatment of palm oil or palm olein was assessed using the following outcomes: plasma or serum TC, TG, HDL-C, and LDL-C concentration (5) Study should have control group and (6) studies on specific fatty acid, fraction enriched tocotrienol and tocopherol, crude palm oil, kernel oil, red palm oil, thermally oxidized palm oil, hydrogenated palm oil, and palm oil or palm olein based products namely margarine, palm milk, butter and cream were excluded. The quality and the risk of bias on the selected studies were assessed using the ARRIVE Guideline and SYRCLE's Risk of Bias tools, respectively. Results: The literature search successfully identified 17 potentially relevant articles, whereby nine of them met the inclusion criteria. All research articles included in this review were in vivo studies comprising seven rats, one hamster and one mice model. Conclusion: Significant positive outcomes were observed in several lipid parameters such as TC and LDL-C. The evidence from this review supported that palm oil and palm olein possess high potential as lipid-lowering agents.
    Matched MeSH terms: Lipids
  8. Iqbal MZ, Khan AH, Iqbal MS, Syed Sulaiman SA
    J Pharm Bioallied Sci, 2019 10 18;11(4):299-309.
    PMID: 31619911 DOI: 10.4103/jpbs.JPBS_138_19
    A strict and adherence treatment is required by the patient with diabetes mellitus and it demands a proper self-medication by the patient. Pharmacists are involved in providing self-management support to the patients. This review evaluates the interventions of pharmacist for patients to improve self-management with diabetes mellitus and also to improve the clinical outcomes of diabetes mellitus. A comprehensive literature search was performed by using different keywords "pharmacist-led intervention," "diabetes," "effect of pharmacist on outcome of diabetes," and "self-management of diabetes" with the help of various electronic databases such as PubMed, Science Direct, Embase, Web of Science, and the Cochrane Library from the beginning of the database through September 2018. The primary outcome was glycated hemoglobin (HbA1c), whereas the secondary outcomes were blood glucose level, blood pressure (BP) measure, body mass index, lipids, adherence to medication, and quality of life. Twenty-five studies comprising 2997 diabetic patients were included in the analysis. Pharmacist-led intervention was involved in all included studies in the form of education on diabetes and its complications, medication adherence, lifestyle, and education about self-management skills. Pharmacist-led interventions are able to reduce HbA1c levels with a mean of 0.75%. Most studies do not expose the material and methods used in pharmacist-led intervention. The variation in the reduction of HbA1c, fasting blood sugar, BP, and lipid profile was due to the lack of this standardization. The included studies indicated that pharmacist-led interventions in diabetes mellitus can significantly improve the outcomes of diabetes mellitus and its complication later on. Hence, these long-term improvements in outcomes added more value of pharmacists in health-care system of the world.
    Matched MeSH terms: Lipids
  9. Abourehab MAS, Khames A, Genedy S, Mostafa S, Khaleel MA, Omar MM, et al.
    Pharmaceutics, 2021 Apr 19;13(4).
    PMID: 33921796 DOI: 10.3390/pharmaceutics13040581
    Nicergoline (NIC) is a semisynthetic ergot alkaloid derivative applied for treatment of dementia and other cerebrovascular disorders. The efficacy of sesame oil to slow and reverse the symptoms of neurodegenerative cognitive disorders has been proven. This work aimed to formulate and optimize sesame oil-based NIC-nanostructured lipid carriers (NIC-NLCs) for intranasal (IN) delivery with expected synergistic and augmented neuroprotective properties. The NIC-NLC were prepared using sesame oil as a liquid lipid. A three-level, three-factor Box-Behnken design was applied to statistically optimize the effect of sesame oil (%) of the total lipid, surfactant concentration, and sonication time on particle size, zeta potential, and entrapment efficacy as responses. Solid-state characterization, release profile, and ex vivo nasal permeation in comparison to NIC solution (NIC-SOL) was studied. In vivo bioavailability from optimized NIC-NLC and NIC-SOL following IN and IV administration was evaluated and compared. The optimized NIC-NLC formula showed an average particle size of 111.18 nm, zeta potential of -15.4 mV, 95.11% entrapment efficacy (%), and 4.6% loading capacity. The NIC-NLC formula showed a biphasic, extended-release profile (72% after 48 h). Permeation of the NIC-NLC formula showed a 2.3 enhancement ratio. Bioavailability studies showed a 1.67 and 4.57 fold increase in plasma and brain following IN administration. The results also indicated efficient direct nose-to-brain targeting properties with the brain-targeting efficiency (BTE%) and direct transport percentage (DTP%) of 187.3% and 56.6%, respectively, after IN administration. Thus, sesame oil-based NIC-NLC can be considered as a promising IN delivery system for direct and efficient brain targeting with improved bioavailability and expected augmented neuroprotective action for the treatment of dementia.
    Matched MeSH terms: Lipids
  10. Wan Iskandar WFN, Salim M, Patrick M, Timimi BA, Zahid NI, Hashim R
    J Phys Chem B, 2021 05 06;125(17):4393-4408.
    PMID: 33885309 DOI: 10.1021/acs.jpcb.0c10629
    The lyotropic phase behavior of four common and easily accessible glycosides, n-octyl α-d-glycosides, namely, α-Glc-OC8, α-Man-OC8, α-Gal-OC8, and α-Xyl-OC8, was investigated. The presence of normal hexagonal (HI), bicontinuous cubic (VI), and lamellar (Lα) phases in α-Glc-OC8 and α-Man-OC8 including their phase diagrams in water reported previously was verified by deuterium nuclear magnetic resonance (2H NMR), via monitoring the D2O spectra. Additionally, the partial binary phase diagrams and the liquid crystal structures formed by α-Gal-OC8 and α-Xyl-OC8 in D2O were constructed and confirmed using small- and wide-angle X-ray scattering and 2H NMR. The average number of bound water molecules (nb) per headgroup in the Lα phase was determined by the systematic measurement of the quadrupolar splitting of D2O over a wide range of molar ratio values (glycoside/D2O), especially at high glucoside composition. The number of bound water molecules bound to the headgroup was found to be around 1.5-2.0 for glucoside, mannoside, and galactoside, all of which possesses four OH groups. In the case of xyloside, which has only three OH groups, the bound water content is ∼2.0. Our findings confirmed that the bound water content of all n-octyl α-d-glycosides studied is lower compared to the number of possible hydrogen bonding sites possibly due to the fact that most of the OH groups are involved in intralayer interaction that holds the lipid assembly together.
    Matched MeSH terms: Lipids
  11. Arifin SA, Falasca M
    Metabolites, 2016;6(1).
    PMID: 26784247 DOI: 10.3390/metabo6010006
    Metabolism is a chemical process used by cells to transform food-derived nutrients, such as proteins, carbohydrates and fats, into chemical and thermal energy. Whenever an alteration of this process occurs, the chemical balance within the cells is impaired and this can affect their growth and response to the environment, leading to the development of a metabolic disease. Metabolic syndrome, a cluster of several metabolic risk factors such as abdominal obesity, insulin resistance, high cholesterol and high blood pressure, and atherogenic dyslipidaemia, is increasingly common in modern society. Metabolic syndrome, as well as other diseases, such as diabetes, obesity, hyperlipidaemia and hypertension, are associated with abnormal lipid metabolism. Cellular lipids are the major component of cell membranes; they represent also a valuable source of energy and therefore play a crucial role for both cellular and physiological energy homeostasis. In this review, we will focus on the physiological and pathophysiological roles of the lysophospholipid mediator lysophosphatidylinositol (LPI) and its receptor G-protein coupled receptor 55 (GPR55) in metabolic diseases. LPI is a bioactive lipid generated by phospholipase A (PLA) family of lipases which is believed to play an important role in several diseases. Indeed LPI can affect various functions such as cell growth, differentiation and motility in a number of cell-types. Recently published data suggest that LPI plays an important role in different physiological and pathological contexts, including a role in metabolism and glucose homeostasis.
    Matched MeSH terms: Lipids; Lysophospholipids
  12. Karupaiah T, Chee SS
    Malays J Nutr, 1997;3(2):117-130.
    MyJurnal
    Coronary Heart Disease (CHD) is recognised as an important public health problem in Malaysia. Hyperlipidaemia is one of the main risk factors related to CHD. The mainstay of treatment is diet therapy which should be maintained even if drug treatment is indicated. Since dietitians are the primary providers of dietary treatment to hyperlipidaemic patients, this retrospective study attempts to report the dietary approaches and methodologies adopted by Malaysian dietitians in managing their patients. A postal questionnaire covering various aspects of dietary management of hyperlipidaemia were sent to 47 dietitians practicing in private and government hospitals. A response rate of 53 % was elicited. The survey found that there was a disparity amongst the respondents in the approach to the dietary management of hyperlipidaemia in Malaysia. This was largely due to the absence of a standardised dietary protocol for general lipid lowering in patients with hyperlipidaemia.
    Study site: Private and public hospitals in Malaysia
    Matched MeSH terms: Lipids
  13. Munir MB, Hashim R, Abdul Manaf MS, Nor SA
    Trop Life Sci Res, 2016 Aug;27(2):111-25.
    PMID: 27688855 MyJurnal DOI: 10.21315/tlsr2016.27.2.9
    This study used a two-phase feeding trial to determine the influence of selected dietary prebiotics and probiotics on growth performance, feed utilisation, and morphological changes in snakehead (Channa striata) fingerlings as well as the duration of these effects over a post-experimental period without supplementation. Triplicate groups of fish (22.46 ±0.17 g) were raised on six different treatment diets: three prebiotics (0.2% β-glucan, 1% galacto-oligosaccharides [GOS], 0.5% mannan-oligosaccharides [MOS]), two probiotics (1% live yeast [Saccharomyces cerevisiae] and 0.01% Lactobacillus acidophilus [LBA] powder) and a control (unsupplemented) diet; there were three replicates for each treatment. All diets contained 40% crude protein and 12% crude lipid. Fish were fed to satiation three times daily. No mortalities were recorded during Phase 1; however, 14% mortality was documented in the control and prebiotic-amended fish during Phase 2. At the end of Phase 1, growth performance and feed utilisation were significantly higher (p<0.05) in the LBA-treated fish, followed by live yeast treatment, compared with all other diets tested. The performance of fish on the three prebiotic diets were not significantly different from one another but was significantly higher than the control diet. During Phase 2 (the post-feeding phase), fish growth continued until the 6th week for the probiotic-based diets but levelled off after four weeks for the fish fed the prebiotic diets. The feed conversion ratio (FCR) was higher in all treatments during the post-feeding period. The hepatosomatic index (HSI) did not differ significantly among the tested diets. The visceral somatic index (VSI) and intraperitoneal fat (IPF) were highest in the LBA-based diet and the control diet, respectively. The body indices were significantly different (p<0.05) between Phases 1 and 2. This study demonstrates that probiotic-based diets have a more positive influence on the growth, feed utilisation, and survival of C. striata fingerlings compared with supplementation with prebiotics.
    Matched MeSH terms: Lipids
  14. Harun MS, Wong TW, Fong CW
    Int J Pharm, 2021 Jan 25;593:120099.
    PMID: 33259902 DOI: 10.1016/j.ijpharm.2020.120099
    This study investigated combination nanocarrier and microwave system for α-tocopherol and γ-tocotrienol delivery against dermatitis, without skin thinning effect of steroids. The vitamin E was formulated into water-rich/water-poor nanoemulsions, and had their droplet size, zeta potential, morphology, therapeutic content, encapsulation efficiency and release, in vitro skin therapeutics/nanoemulsion penetration, retention and permeation profiles, and in vivo pharmacodynamics characteristics examined, with skin pre-treated by precision microwave when applicable. The nanoemulsions had droplet sizes <150 nm and negative zeta potential values. The skin pre-treatment by microwave (1 mW/3985 MHz) promoted therapeutics accumulation in epidermis through enhancing nanoemulsion penetration into skin. The combination nano- and microwave technologies fluidized skin lipid and protein domains with epidermal microstructures being fluidized to a greater extent than dermis, allowing a relatively high epidermal-to-dermal nanoemulsion distribution. Microwave of lower or higher than 3985 MHz brought about lower skin therapeutics/nanoemulsion accumulation due to insufficient lipid/protein domain fluidization or microwave-skin interaction limiting at skin surfaces only. Using water-rich nanoemulsion with higher therapeutic release and skin pre-treatment with 3985 MHz microwave, dermatitis was alleviated in vivo without skin thinning of standard steroid. The use of combination microwave and nanotechnology promotes vitamin delivery and translates to positive dermatitis treatment outcome that warrants future investigation.
    Matched MeSH terms: Lipids
  15. Gadhave D, Tupe S, Tagalpallewar A, Gorain B, Choudhury H, Kokare C
    Int J Pharm, 2021 Sep 25;607:121050.
    PMID: 34454028 DOI: 10.1016/j.ijpharm.2021.121050
    Unfavorable side effects of available antipsychotics limit the use of conventional delivery systems, where limited exposure of the drugs to the systemic circulation could reduce the associated risks. The potential of intranasal delivery is gaining interest to treat brain disorders by delivering the drugs directly to the brain circumventing the tight junctions of the blood-brain barrier with limited systemic exposure of the entrapped therapeutic. Therefore, the present research was aimed to fabricate, optimize and investigate the therapeutic efficacy of amisulpride (AMS)-loaded intranasal in situ nanoemulgel (AMS-NG) in the treatment of schizophrenia. In this context, AMS nanoemulsion (AMS-NE) was prepared by employing aqueous-titration method and optimized using Box-Behnken statistical design. The optimized nanoemulsion was subjected to evaluation of globule size, transmittance, zeta potential, and mucoadhesive strength, which were found to be 92.15 nm, 99.57%, -18.22 mV, and 8.90 g, respectively. The AMS-NE was converted to AMS-NG using poloxamer 407 and gellan gum. Following pharmacokinetic evaluation in Wistar rats, the brain Cmax for intranasal AMS-NG was found to be 1.48-folds and 3.39-folds higher when compared to intranasal AMS-NE and intravenous AMS-NE, respectively. Moreover, behavioral investigations of developed formulations were devoid of any extrapyramidal side effects in the experimental model. Finally, outcomes of the in vivo hematological study confirmed that intranasal administration of formulation for 28 days did not alter leukocytes and agranulocytes count. In conclusion, the promising results of the developed and optimized intranasal AMS-NG could provide a novel platform for the effective and safe delivery of AMS in schizophrenic patients.
    Matched MeSH terms: Lipids
  16. Mohd. Nasir, M. T., Yeo, J., Huang, M. S. L., Koh, M. T., Kamarul Azhar, R., Khor, G. L.
    MyJurnal
    This study determined the association between nutritional status and the use of protease inhibitors (PI)
    containing regimen among HIV-infected children receiving treatment at the referral centres in Klang
    Valley. A total of 95 children currently on antiretroviral (ARV) therapy, aged one to eighteen years, were recruited using purposive sampling. Demographic data, anthropometric measurements, medical history, were collected using a structured questionnaire. Serum micronutrients levels and lipid profile were also examined using blood samples. Mean age was 8.8 3.9 years and 44.2% were on PI. Age ( 2 = 10.351, p = .006), weight-for-age ( 2 = 6.567, p = .010), serum selenium ( 2 = 4.225, p = .040) and HDL-C ( 2 = 7.539, p = .006) were significantly associated with the use of PI. Fewer children on PI were deficient in selenium as compared to those not on PI. On the contrary, more children on PI were underweight and had low HDL-C. The use of PI was found to have both positive and negative effects with better selenium level but poorer HDL-C level and weight status.
    Matched MeSH terms: Lipids
  17. MyJurnal
    Efficacy of some Malaysian herbal aqueous extracts, BHA/BHT (synthetic antioxidants) and ascorbic acid in retarding oxidative rancidity was tested with cakes. The development of lipid oxidation products during 15 days at room temperature was evaluated by means of Peroxide Value (PV) and Thiobarbituric acidreactive substances (TBARS) value. The six formulations consists of control sample (cake without addition of antioxidant) (F1), cake added with curry leaves extract (F2), cake incorporated with kesum leaves extract (F3), cake added with tenggek burung leaves extract (F4), cake incorporated with ascorbic acid (F5) and cake added with BHA/BHT (F6). Formulation with the incorporation of tenggek burung leaves extract showed powerful oxidative stability effect compared to the formulations with othe plant extracts and control sample. However, cakes with BHA/BHT showed the strongest oxidative stability throughout the storage period. Therefore, it is suggested that tenggek burung leaves extract can be added into the food system for effectiveness as antioxidant to prolong the shelf life of the product.
    Matched MeSH terms: Lipids
  18. Rajan, Nithiya Shanmuga, Bhat,Rajeev, Karim, A.A.
    MyJurnal
    Unripe and ripe kundang fruits (Bouea macrophylla Griffith) is either consumed fresh or is cooked in Malaysia. In this study composition of unripe and ripe fruits (proximate, amino acids profile, minerals and heavy metal contents) were evaluated. Results obtained showed unripe kundang fruit to possess higher moisture, ash, crude lipid, crude fiber and crude protein contents than the ripe fruits. With regard to amino acid contents, unripe fruits had higher content of essential amino acids. The unripe and ripe fruits were found to be rich in essential minerals with potassium (K) to be in abundance. Heavy metals such as cadmium, nickel, mercury, lead and arsenic, were detected in trace amounts (< 5.0 mg/kg) in both unripe and ripe fruits. Through this investigation, it is concluded that both unripe and ripe fruits to posses’ adequate amount of nutritionally important compounds beneficial to human health and can be explored for commercial purposes.
    Matched MeSH terms: Lipids
  19. Siddique, M.A.M., Khan, M.S.K., Bhuiyan, M.K.A.
    MyJurnal
    Nutritional fact study has prime importance to make the species edible and commercially viable to the food consumers. The proximate chemical composition and amino acid profile of Gelidium pusillum were studied to understand the nutritional status. The red seaweed Gelidium pusillum was rich in dietary fibre (24.74 ± 1.05%), lipid (2.16 ± 0.61%) and ash content (21.15 ± 0.74%). The mean protein content (11.31 ± 1.02% DW) was within the range of 10-47% for green and red seaweeds and this range was higher than Gracilaria cornea (5.47% DW), Gracilaria changgi (6.90% DW) and Eucheuma cottonii (9.76% DW). Gelidium pusillum was found to contained all the essential amino acids, which accounted for 52.08% of the total amino acids. Tyrosine (26.2 mg g-1 protein), methionine (15.8 mg g-1 protein) and Lysine (48.3 mg g-1 protein) were the limiting amino acid of Gelidium pusillum. However, the levels of other essential amino acids were above the FAO/WHO requirement pattern (EAA score ranged from 1.14 to 1.62). Aspartic and glutamic acids constituted a substantial amount of the total amino acids (24.68% of total amino acid). The result from this study suggested that Gelidium pusillum could be utilized as a healthy food item for human consumption.
    Matched MeSH terms: Lipids
  20. Siew, Ching Ngai, Ramasamy, Rajesh, Syahril Abdullah
    MyJurnal
    Many diseases are potential targets for gene therapy using either non-viral or viral vectors. Unlike nonviralmethods, viral vectors, such as lentiviruses, have the ability to integrate into the host chromosome,which can lead to long-term transgene expression. Lentiviruses have advantages over other types ofviruses due to their capacity to transduce non-dividing cells. An optimized generation of lentivirusescarrying green fluorescent protein (GFP) reporter gene driven by either UbC (LV/UbC/GFP) orCMV (LV/CMV/GFP) promoter is described in this paper. The lentiviruses were produced by cotransfectinglentiviral expression constructs and packaging mix into 293FT lentivirus producer cell lines.Lipofectamine was highly efficient in transfecting the cells compared to Transfast and Polyethyleneimine(PEI). Following cell transfection, syncytia were clearly visible at day 2. Lentiviruses were harvestedat days 1, 2 and 3 post-transfection. The highest transduction efficiency was read from LV/CMV/GFPharvested at day 2 post-transfection and LV/UbC/GFP harvested at day 3 post-transfection. Finally,the GFP expression in COS-7 cells was determined at day 2 and day 14 post-transduction for transientand stable GFP expression. It was found that the GFP expression declined overtime. However, thetransduction efficiency and duration of the transgene expression in COS-7 cells transduced with LV/CMV/GFP were higher compared to LV/UbC/GFP. In conclusion, we have successfully produced lentivirusescarrying GFP with different promoters and shown that the viruses were able to infect COS-7 cells atdifferent efficiencies. Meanwhile, the generation of the active lentiviruses will allow us to proceed to the subsequent analysis of the effect of regulatory elements in future study.
    Matched MeSH terms: Lipids
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links