Displaying publications 221 - 240 of 505 in total

Abstract:
Sort:
  1. Sommer SG, Mathanpaal G, Dass GT
    Environ Technol, 2005 Mar;26(3):303-12.
    PMID: 15881027
    On commercial pig production farms in South East (SE) Asia, the liquid effluent is often discharged into rivers. The discharge is a hazard to the environment and to the health of people using water from the river either for consumption or for irrigation. Therefore, a simple percolation biofilter for treatment of the liquid effluent was developed. Pig slurry was treated in test-biofilters packed with different biomass for the purpose of selecting the most efficient material, thereafter the efficiency of the biofilter was examined at farm scale with demo biofilters using the most efficient material. The effect of using "Effective Microorganisms" (EM) added to slurry that was treated with biofilter material mixed with Glenor KR+ was examined. Slurry treatment in the test-biofilters indicated that rice straw was better than coconut husks, wood shavings, rattan strips and oil palm fronds in reducing BOD. Addition of EM and Glenor KR+ to slurry and biofilter material, respectively, had no effect on the temperature of the biofilter material or on the concentrations of organic and inorganic components of the treated slurry. The BOD of slurry treated in test biofilters is reduced to between 80 and 637 mg O2 I(-1) and in the demo biofilter to between 3094 and 3376 mg O2 l(-1). The concentration of BOD in the effluent is related to the BOD in the slurry being treated and the BOD concentration in slurry treated in test biofilters was lower than BOD of slurry treated in demo biofilters. The demo biofilter can reduce BOD to between 52 an 56% of the original value, and TSS, COD (chemical oxygen demand) and ammonium (NH4+) to 41-55% of the original slurry. The treated effluent could not meet the standards for discharge to rivers. The composted biofilter material has a high content of nitrogen and phosphorus; consequently, the fertilizer value of the compost is high. The investments costs were 123 US dollar per SPP which has to be reduced if this method should be a treatment option in practise.
    Matched MeSH terms: Biodegradation, Environmental
  2. Nkem BM, Halimoon N, Yusoff FM, Johari WLW, Zakaria MP, Medipally SR, et al.
    Mar Pollut Bull, 2016 Jun 15;107(1):261-268.
    PMID: 27085593 DOI: 10.1016/j.marpolbul.2016.03.060
    In this study, we isolated two indigenous hydrocarbon-degrading bacteria from tarball found in Rhu Sepuluh beach, Terengganu, Malaysia. These bacteria were identified based on their physiological characteristic and 16S rRNA gene sequence analysis, and they showed 99% similarity with Cellulosimicrobium cellulans DSM 43879 and Acinetobacter baumannii ATCC 19606 respectively. Their hydrocarbon-degrading capabilities were tested using diesel-oil as sole carbon source. Results analysed using GC-MS, showed diesel-oil alkanes were degraded an average 64.4% by C. cellulans and 58.1% by A. baumannii with medium optical density reaching 0.967 (C. cellulans) and 1.515 (A. baumannii) in minimal salt media at 32°C for 10days. Individual diesel-oil alkanes were degraded between 10%-95.4% by C. cellulans and 0.2%-95.9% by A. baumannii. Both strains utilized diesel-oil for growth. The study suggests both strains are part of indigenous hydrocarbon-degrading bacteria in tarball with potential for bioremediation of oil-polluted marine environment.
    Matched MeSH terms: Biodegradation, Environmental
  3. Wang X, Utsumi M, Gao Y, Li Q, Tian X, Shimizu K, et al.
    Chemosphere, 2016 Mar;147:230-8.
    PMID: 26766360 DOI: 10.1016/j.chemosphere.2015.12.067
    Microcystins-LR (MC-LR) which is a kind of potent hepatotoxin for humans and wildlife can be biodegraded by microbial community. In this study, the capacity of biofilm in degrading MC-LR was investigated with and without additional metal ions (Mn(2+), Zn(2+) and Cu(2+)) at the concentration of 1 mg L(-1). The results indicated that the degradation rate of MC-LR by biofilm was inhibited by introduced Mn(2+) and Cu(2+) during the whole culture period. MC-LR cannot be degraded until a period of culture time passed both in the cases with Zn(2+) and Cu(2+) (2 and 8 days for Zn(2+) and Cu(2+), respectively). The results of mlrA gene analysis showed that the abundance of MC-LR degradation bacteria (MCLDB) in the microbial community under Mn(2+) condition was generally lower than that under no additional metal ion condition. Meanwhile, a two days lag phase for the proliferation of MCLDB occurred after introducing Zn(2+). And a dynamic change of MCLDB from Cu(2+) inhibited species to Cu(2+) promoted species was observed under Cu(2+) condition. The maximum ratio of MCLDB to overall bacteria under various conditions during culture process was found to follow the tendency as: Cu(2+) > Zn(2+) ≈ no additional metal ion (Control) > Mn(2+), suggesting the adverse effect of Mn(2+), no obvious effect of Zn(2+) and positive effect of Cu(2+) on the distribution ratio of MCLDB over the biofilm.
    Matched MeSH terms: Biodegradation, Environmental
  4. Jong VS, Tang FE
    Water Sci Technol, 2016;73(4):909-15.
    PMID: 26901735 DOI: 10.2166/wst.2015.563
    Individual septic tanks are the most common means of on-site sanitation in Malaysia, but they result in a significant volume of septage. A two-staged vertical flow constructed wetlands (VFCWs) system for the treatment of septage was constructed and studied in Sarawak, Malaysia. Raw septage was treated in the first stage wetlands, and the resulting percolate was fed onto the second stage wetlands for further treatment. Here, the effects of a batch loading regime on the contaminant removal efficiency at the second stage wetlands, which included palm kernel shell within their filter substrate, are presented. The batch loading regime with pond:rest (P:R) period of 1:1, 2:2 and 3:3 (day:day) was studied. The improvement of the effluent redox condition was evident with P:R = 3:3, resulting in excellent organic matters (chemical oxygen demand and biochemical oxygen demand) and nitrogen reduction. The bed operated with P:R = 1:1 experienced constant clogging, with a water layer observed on the bed surface. For the P:R = 3:3 regime, the dissolved oxygen profile was not found to decay drastically after 24 hours of ponding, suggesting that the biodegradation mainly occurred during the first day. The study results indicate that a suitable application regime with an adequate rest period is important in VFCWs to ensure efficient operation.
    Matched MeSH terms: Biodegradation, Environmental
  5. Oon YL, Ong SA, Ho LN, Wong YS, Oon YS, Lehl HK, et al.
    Bioresour Technol, 2015 Jun;186:270-5.
    PMID: 25836035 DOI: 10.1016/j.biortech.2015.03.014
    An innovative design of upflow constructed wetland-microbial fuel cell (UFCW-MFC) planted with cattail was used for simultaneous wastewater treatment and electricity generation. The electrodes material employed in the study was carbon felt. The main aim of this study is to assess the performance of the UFCW coupling with MFC in term of ability to treat wastewater and the capability to generate bioelectricity. The oxidation reduction potential (ORP) and dissolved oxygen (DO) profile showed that the anaerobic and aerobic regions were well developed in the lower and upper bed, respectively, of UFCW-MFC. Biodegradation of organic matter, nitrification and denitrification was investigated and the removal efficiencies of COD, NO3(-), NH4(+) were 100%, 40%, and 91%, respectively. The maximum power density of 6.12 mW m(-2) and coulombic efficiency of 8.6% were achieved at electrode spacing of anode 1 (A1) and cathode (15 cm).
    Matched MeSH terms: Biodegradation, Environmental
  6. Molla AH, Fakhru'l-Razi A, Hanafi MM, Abd-Aziz S, Alam MZ
    PMID: 12369641
    Ten filamentous fungi adapted to domestic wastewater sludge (DWS) were further studied to evaluate their potential in terms of adaptation to higher sludge supplemented growing media and phytopathogenicity (induction of diseases to plants) to three germinating crop (Corn: Zea mays, Mung bean: Phaseolus aureus and Mustard: Brassica napus) seeds. The performances of the fungi in seed germination were evaluated based on percent germination index (GI) and infected/spotted seeds on direct fungal biomass (FBM) and fungal metabolite (FM). Significantly the highest biomass production was achieved with RW-P1 512 and Penicillium corylophilum (WW-P1003) at the highest (25%) sludge supplemented growing media that implied its excellent potentiality of adaptation and multiplication to domestic wastewater sludge. Significantly encouraging results of percent GI and spotted/infected seedlings were observed in FM than FBM by all fungi except the strain Aspergillus niger. A. niger gave the poorest percent of GI (24.30, 26.98 and 00.00%) and the highest percent of infected/spotted seeds (70, 100, and 100%) using FBM for corn, mung bean and mustard, respectively. On the other hand, comparatively the highest percent of GI (107.99, 106.25 and 117.67%) and the lowest percent of spotted/infected seedlings (3.3, 3.3 and 3.3%) were achieved with the isolate RW-P1 512 using FM. In FBM, the superior results of percent GI (86.61, 95.92 and 83.87%) and spotted/infected seedlings (3.3, 63.3 and 43.3%) were obtained by A. versicolor. Several crop seeds were responded differently for different fungal treatments. Hundred percent infected/spotted seeds in FM were recorded only for mustard with Trichoderma family that implied its strong sensitiveness to its metabolites.
    Matched MeSH terms: Biodegradation, Environmental
  7. Abdul-Talib S, Hvitved-Jacobsen T, Vollertsen J, Ujang Z
    Water Sci Technol, 2002;45(3):53-60.
    PMID: 11902481
    The sewer is an integral part of the urban wastewater system: the sewer, the wastewater treatment plant and the local receiving waters. The sewer is a reactor for microbial changes of the wastewater during transport, affecting the quality of the wastewater and thereby the successive treatment processes or receiving water impacts during combined sewer overflows. This paper presents the results of studies on anoxic processes, namely denitrification, in the bulk water phase of wastewater as it occurs in sewers. Experiments conducted on 12 different wastewater samples have shown that the denitrification process in the bulk wastewater can be simplified by the reduction of nitrate to nitrogen with significant accumulation of nitrite in the water phase. Utilization of nitrate was observed not to be limited by nitrate for concentrations above 5 gNO3-N/m3. The denitrification rates, under conditions of excess substrate and electron acceptor, were found to be in the range of 0.8-2.0 g NO3-N/(m3h). A discussion on the interaction of the sewer processes and the effects on a downstream located wastewater treatment plant (WWTP) is provided.
    Matched MeSH terms: Biodegradation, Environmental
  8. Ismail BS, Quirinus L
    Bull Environ Contam Toxicol, 2000 Oct;65(4):530-6.
    PMID: 10960146
    Matched MeSH terms: Biodegradation, Environmental
  9. Sahid IB, Teoh SS
    Bull Environ Contam Toxicol, 1994 Feb;52(2):226-30.
    PMID: 8123982
    Matched MeSH terms: Biodegradation, Environmental
  10. Adlan NA, Sabri S, Masomian M, Ali MSM, Rahman RNZRA
    Front Microbiol, 2020;11:565608.
    PMID: 33013795 DOI: 10.3389/fmicb.2020.565608
    The deposition of paraffin wax in crude oil is a problem faced by the oil and gas industry during extraction, transportation, and refining of crude oil. Most of the commercialized chemical additives to prevent wax are expensive and toxic. As an environmentally friendly alternative, this study aims to find a novel thermophilic bacterial strain capable of degrading paraffin wax in crude oil to control wax deposition. To achieve this, the biodegradation of crude oil paraffin wax by 11 bacteria isolated from seawater and oil-contaminated soil samples was investigated at 70°C. The bacteria were identified as Geobacillus kaustophilus N3A7, NFA23, DFY1, Geobacillus jurassicus MK7, Geobacillus thermocatenulatus T7, Parageobacillus caldoxylosilyticus DFY3 and AZ72, Anoxybacillus geothermalis D9, Geobacillus stearothermophilus SA36, AD11, and AD24. The GCMS analysis showed that strains N3A7, MK7, DFY1, AD11, and AD24 achieved more than 70% biodegradation efficiency of crude oil in a short period (3 days). Notably, most of the strains could completely degrade C37-C40 and increase the ratio of C14-C18, especially during the initial 2 days incubation. In addition, the degradation of crude oil also resulted in changes in the pH of the medium. The degradation of crude oil is associated with the production of degradative enzymes such as alkane monooxygenase, alcohol dehydrogenase, lipase, and esterase. Among the 11 strains, the highest activities of alkane monooxygenase were recorded in strain AD24. A comparatively higher overall alcohol dehydrogenase, lipase, and esterase activities were observed in strains N3A7, MK7, DFY1, AD11, and AD24. Thus, there is a potential to use these strains in oil reservoirs, crude oil processing, and recovery to control wax deposition. Their ability to withstand high temperature and produce degradative enzymes for long-chain hydrocarbon degradation led to an increase in the short-chain hydrocarbon ratio, and subsequently, improving the quality of the oil.
    Matched MeSH terms: Biodegradation, Environmental
  11. Goh KM, Kahar UM, Chai YY, Chong CS, Chai KP, Ranjani V, et al.
    Appl Microbiol Biotechnol, 2013 Feb;97(4):1475-88.
    PMID: 23324802 DOI: 10.1007/s00253-012-4663-2
    The Bacillaceae family members are a good source of bacteria for bioprocessing and biotransformation involving whole cells or enzymes. In contrast to Bacillus and Geobacillus, Anoxybacillus is a relatively new genus that was proposed in the year 2000. Because these bacteria are alkali-tolerant thermophiles, they are suitable for many industrial applications. More than a decade after the first report of Anoxybacillus, knowledge accumulated from fundamental and applied studies suggests that this genus can serve as a good alternative in many applications related to starch and lignocellulosic biomasses, environmental waste treatment, enzyme technology, and possibly bioenergy production. This current review provides the first summary of past and recent discoveries regarding the isolation of Anoxybacillus, its medium requirements, its proteins that have been characterized and cloned, bioremediation applications, metabolic studies, and genomic analysis. Comparisons to some other members of Bacillaceae and possible future applications of Anoxybacillus are also discussed.
    Matched MeSH terms: Biodegradation, Environmental
  12. Arumugam N, Chelliapan S, Kamyab H, Thirugnana S, Othman N, Nasri NS
    PMID: 30551682 DOI: 10.3390/ijerph15122851
    Inadequately treated or untreated wastewater greatly contribute to the release of unwanted toxic contaminants into water bodies. Some of these contaminants are persistent and bioaccumulative, becoming a great concern as they are released into the environment. Despite the abundance of wastewater treatment technologies, the adsorption method overall has proven to be an excellent way to treat wastewater from multiple industry sources. Because of its significant benefits, i.e., easy availability, handling, and higher efficiency with a low cost relative to other treatments, adsorption is opted as the best method to be used. However, biosorption using naturally found seaweeds has been proven to have promising results in removing pollutants, such as dyes from textile, paper, and the printing industry, nitrogen, and phosphorous and phenolic compounds, as well as heavy metals from various sources. Due to its ecofriendly nature together with the availability and inexpensiveness of raw materials, biosorption via seaweed has become an alternative to the existing technologies in removing these pollutants from wastewater effectively. In this article, the use of low-cost adsorbent (seaweed) for the removal of pollutants from wastewater has been reviewed. An extensive table summarises the applicability of seaweed in treating wastewater. Literature reported that the majority of research used simulated wastewater and minor attention has been given to biosorption using seaweed in the treatment of real wastewater.
    Matched MeSH terms: Biodegradation, Environmental
  13. Ahmad A, Sreedhar Reddy S, Rumana G
    Int J Phytoremediation, 2019;21(5):471-478.
    PMID: 30648407 DOI: 10.1080/15226514.2018.1537243
    To assess the tolerance, the rye-grass L. grown on soil amended with petroleum wastewater (PWW) containing four metals lead, zinc, nickel and mercury. The PWW (25 to 50%) showed remarkable increase in length and biomass. Chlorophyll 'a and b' increased with an increase of PWW from 25-50% while such contents decreased on increasing the 75-100% compared to control. The mass balance performed on the system showed the removal of 90-97.6% lead, 85.5-92.9% zinc, 78.9-85.5% nickle and 47.6-27.5% mercury. The model for the maximum metal reduction rate (Rmax) was much better for Pb (89.5) and Zn (72.1) with respect to Ni (57.3) and Hg (32.4). Survival of rye-grass (30-days, statics, and renewal exposures) was increased by 50% as compared to control. The toxicity index Y of PWW showed 0-25% deficiency level, 25-50% tolerance level, 50-90% toxic level and 90-100% lethal level. The experimental data showing high correlation coefficient (R2 = 0.98).
    Matched MeSH terms: Biodegradation, Environmental
  14. Hamid MAA, Aziz HA, Yusoff MS, Rezan SA
    Water Environ Res, 2021 Apr;93(4):596-607.
    PMID: 32991022 DOI: 10.1002/wer.1461
    The high-strength leachate produced from sanitary landfill is a serious issue around the world as it poses adverse effects on aquatic life and human health. Physio-chemical technology is one of the promising options as the leachate normally presents in stabilized form and not fully amendable by biological treatment. In this research, the effectiveness of natural zeolite (clinoptilolite) augmented electrocoagulation process (hybrid system) for removing high-strength ammonia (3,442 mg/L) and color (8,427 Pt-Co) from naturally saline (15 ppt) local landfill leachate was investigated. A batch mode laboratory-scale reactor with parallel-monopolar aluminum electrodes attached to a direct current (DC) electric power was used as an electrocoagulation reactor for performance enhancement purpose. Optimum operational conditions of 146 g/L zeolite dosage, 600 A/m2 current density, 60 min treatment time, 200 rpm stirring speed, 35 min settling duration, and pH 9 were recorded with up to 70% and 88% removals of ammonia and color, respectively. The estimated overall operational cost was 26.22 $/m3 . The biodegradability of the leachate had improved from 0.05 to 0.27 in all post-treatment processes. The findings revealed the ability of the hybrid process as a viable option in eliminating concentrated ammonia and color in natural saline landfill leachate. PRACTITIONER POINTS: Clinoptilolite was augmented on the electrocoagulation process in saline and stabilized landfill leachate (15 ppt). The high strength NH3 -N (3,442 mg/L) and color (8,427 Pt-Co) were 70% and 88% removed, respectively. The optimum conditions occurred at 140 g/L zeolite, 60 mA/cm2 current density, 60 min, and final pH of 8.20. The biodegradability of the leachate improved from 0.05 to 0.27 after the treatment. This hybrid treatment was simple, faster, and did not require auxiliary electrolyte.
    Matched MeSH terms: Biodegradation, Environmental
  15. Verasoundarapandian G, Wong CY, Shaharuddin NA, Gomez-Fuentes C, Zulkharnain A, Ahmad SA
    PMID: 33572432 DOI: 10.3390/ijerph18041671
    The globe is presently reliant on natural resources, fossil fuels, and crude oil to support the world's energy requirements. Human exploration for oil resources is always associated with irreversible effects. Primary sources of hydrocarbon pollution are instigated through oil exploration, extraction, and transportation in the Arctic region. To address the state of pollution, it is necessary to understand the mechanisms and processes of the bioremediation of hydrocarbons. The application of various microbial communities originated from the Arctic can provide a better interpretation on the mechanisms of specific microbes in the biodegradation process. The composition of oil and consequences of hydrocarbon pollutants to the various marine environments are also discussed in this paper. An overview of emerging trends on literature or research publications published in the last decade was compiled via bibliometric analysis in relation to the topic of interest, which is the microbial community present in the Arctic and Antarctic marine environments. This review also presents the hydrocarbon-degrading microbial community present in the Arctic, biodegradation metabolic pathways (enzymatic level), and capacity of microbial degradation from the perspective of metagenomics. The limitations are stated and recommendations are proposed for future research prospects on biodegradation of oil contaminants by microbial community at the low temperature regions of the Arctic.
    Matched MeSH terms: Biodegradation, Environmental
  16. Omoregie AI, Ong DEL, Nissom PM
    Lett Appl Microbiol, 2019 Feb;68(2):173-181.
    PMID: 30537001 DOI: 10.1111/lam.13103
    Biocalcification through the use of ureolytic bacteria and biochemical activities has evolved in recent decades into a fervent resourceful effective technology suitable for soil stabilization, crack repair and bioremediation. Extensive studies have been carried out on numerous ureolytic bacterial species isolated from soils and sewage samples. However, very limited attention has been given to limestone caves with natural calcite formations as a possible source for isolation of ureolytic bacteria. In this study, bacterial isolates were recovered from limestone cave samples to determine their suitability for biocalcification. Twenty-seven morphologically distinct bacterial isolates were identified by partial 16S rRNA gene sequencing and their various genetic diversity was characterized according to their phylogenetic affiliations. Based on the molecular identification, Sporosarcina was the most abundant genus among all the ureolytic isolates, while the rest belonged to Pseudogracilibacillus and Bacillus genera. Analytical analysis on urease measurement showed that urease activities for the isolates ranged from 1·130 to 21·513 mol urea hydrolysed per minute, with isolate NB33 achieving the highest value and TSB4 achieving the lowest value. The estimated CaCO3 precipitates for the isolates ranged from 4·04 to 17·26 mg ml-1 , with isolate NB30 achieving the highest value and TSB20 achieving the lowest value. The findings in this study demonstrated that the ureolytic bacteria from limestone caves are promising bio-calcifying agents. SIGNIFICANCE AND IMPACT OF THE STUDY: Ureolytic bacteria continues to play an important role as microbial tools used in geotechnical engineering for soil biocalcification. Microbial strains with the ability to produce urease enzyme and induce calcium carbonate mineral are often isolated from soil, water and sludge samples. However, screening for these essential microbes from extreme regions such as caves are rarely investigated. In this study, native bacteria which were isolated from limestone cave samples are identified and characterized. The findings suggested that these ureolytic bacterial isolates have the potential to serve as suitable alternative microbial agents for soil strengthening and stabilization.
    Matched MeSH terms: Biodegradation, Environmental
  17. Farahin AW, Natrah I, Nagao N, Yusoff FM, Shariff M, Banerjee S, et al.
    Front Bioeng Biotechnol, 2021;9:568776.
    PMID: 33585428 DOI: 10.3389/fbioe.2021.568776
    Microalgae can use either ammonium or nitrate for its growth and vitality. However, at a certain level of concentration, ammonium nitrogen exhibits toxicity which consequently can inhibit microalgae productivity. Therefore, this study is aimed to investigate the tolerance of Tetraselmis tetrathele to high ammonium nitrogen concentrations and its effects on growth rate, photosynthetic efficiency (F
    v
    /F
    m
    ), pigment contents (chlorophyll a, lutein, neoxanthin, and β-carotene), and fatty acids production. Experiments were performed at different ammonium nitrogen concentrations (0.31-0.87 gL-1) for 6 days under a light source with an intensity of 300 μmol photons m-2 s-1 and nitrate-nitrogen source as the experimental control. The findings indicated no apparent enhancement of photosynthetic efficiency (Fv/Fm) at high levels of ammonium nitrogen (


    NH


    4


    +


    -N) for T. tetrathele within 24 h. However, after 24 h, the photosynthetic efficiency of T. tetrathele increased significantly (p < 0.05) in high concentration of


    NH


    4


    +


    -N. Chlorophyll a content in T. tetrathele grown in all of the different


    NH


    4


    +


    -N levels increased significantly compared to nitrate-nitrogen (NO3-N) treatment (p < 0.05); which supported that this microalgal could grow even in high level of


    NH


    4


    +


    -N concentrations. The findings also indicated that T. tetrathele is highly resistant to high ammonium nitrogen which suggests T. tetrathele to be used in the aquaculture industry for bioremediation purpose to remove ammonium nitrogen, thus reducing the production cost while improving the water quality.
    Matched MeSH terms: Biodegradation, Environmental
  18. Mustafa HM, Hayder G
    Heliyon, 2021 Jan;7(1):e06040.
    PMID: 33537482 DOI: 10.1016/j.heliyon.2021.e06040
    The objective of this study was to investigate the performance of different weight of Salvinia molesta plants in biological treatment of domestic wastewater. Three treatment systems containing 280g (GS1), 140g (GS2) and 70g (GS3) of S. molesta plants were used for the phytoremediation process. Physicochemical analysis such as pH, colour, chemical oxygen demand (COD), and biological oxygen demand (BOD5) of the influent and effluent water samples were performed according to spectrophotometric methods. The outcome of the study demonstrated that the different weight of S. molesta plants played a significant role in improving the quality of the wastewater samples, in which GS1 removed 96.8% (colour), 91% (BOD5), and 82.6% (COD). While up to 88.6% (colour), 87.1% (BOD5), and 81.1% (COD) reduction was observed for GS2 treatment systems, and GS3 was efficient in removing 85.5% (colour), 86.1% (BOD5), and 68.3% (COD). Also, a pH value of 6.29-7.19, 5.97-7.07, and 6.17-7.42 was obtained from GS1, GS2 and GS3 treatment systems, respectively. Thus, the treatment system with the highest quantity of S. molesta (GS1) demonstrated better performance compared to the other two systems (GS2 and GS3). The findings of this research can be applied in addressing the goals of sustainable development through the use of green technology to reduce the threat of water pollution in natural water bodies. Perhaps existing and future water scarcity can be resolved through the use of phytoremediation technology.
    Matched MeSH terms: Biodegradation, Environmental
  19. Oyewusi HA, Wahab RA, Huyop F
    Mol Biol Rep, 2021 Mar;48(3):2687-2701.
    PMID: 33650078 DOI: 10.1007/s11033-021-06239-7
    An integral approach to decoding both culturable and uncultured microorganisms' metabolic activity involves the whole genome sequencing (WGS) of individual/complex microbial communities. WGS of culturable microbes, amplicon sequencing, metagenomics, and single-cell genome analysis are selective techniques integrating genetic information and biochemical mechanisms. These approaches transform microbial biotechnology into a quick and high-throughput culture-independent evaluation and exploit pollutant-degrading microbes. They are windows into enzyme regulatory bioremediation pathways (i.e., dehalogenase) and the complete bioremediation process of organohalide pollutants. While the genome sequencing technique is gaining the scientific community's interest, it is still in its infancy in the field of pollutant bioremediation. The techniques are becoming increasingly helpful in unraveling and predicting the enzyme structure and explore metabolic and biodegradation capabilities.
    Matched MeSH terms: Biodegradation, Environmental
  20. Raveena, K., Arularasu, M., Ganesan, S.S. K., Amelia, T.S.M., Ong, M.C., Bhubalan, K., et al.
    MyJurnal
    Mangrove located near urban area is exposed to various industrial discharge including heavy metals. Mangrove soil is capable of accumulating and storing these heavy metals. Heavy metals are toxic and non-biodegradable, so their accumulations affect water quality, while bioaccumulation and bio-assimilation of heavy metals in mangrove organisms negatively impact the food chain. Bacteria-derived biosurfactants are compounds capable of removing heavy metals from soil and sediment. Furthermore, environmentally friendly properties, such as biodegradability and low toxicity, exhibited by biosurfactants make them a suitable replacement for chemical surfactants for remediation efforts. This study was conducted to investigate the lead- (Pb) and zinc- (Zn) removing capability of rhamnolipid (RL), a type of biosurfactant produced by marine bacterium, Pseudomonas aeruginosa UMTKB-5. Rhamnolipid solutions of three different concentrations (25 mg/L, 50 mg/L and 75 mg/L) were added to mangrove soil and incubated for 7 days. The removal of Pb from soils was up to 18.3% using 25 mg/L RL solution, while 50 mg/L RL solution removed 48.3%, and 75 mg/L RL solution removed 75.9% Pb over time. Meanwhile, zinc removal of 25 mg/L RL solution was up to 24.9%, while 50 mg/L removed 16.5%, and 75 mg/L RL removed 30.5% of Zn. The results showed that RL from P. aeruginosa UMTKB-5 could be a potential biomaterial to be used to remediate heavy metals in sediment.
    Matched MeSH terms: Biodegradation, Environmental
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links