Displaying publications 201 - 220 of 1023 in total

Abstract:
Sort:
  1. Poli A, Abdul-Hamid S, Zaurito AE, Campagnoli F, Bevilacqua V, Sheth B, et al.
    Proc Natl Acad Sci U S A, 2021 08 03;118(31).
    PMID: 34312224 DOI: 10.1073/pnas.2010053118
    Regulatory T cells (Tregs) play fundamental roles in maintaining peripheral tolerance to prevent autoimmunity and limit legitimate immune responses, a feature hijacked in tumor microenvironments in which the recruitment of Tregs often extinguishes immune surveillance through suppression of T-effector cell signaling and tumor cell killing. The pharmacological tuning of Treg activity without impacting on T conventional (Tconv) cell activity would likely be beneficial in the treatment of various human pathologies. PIP4K2A, 2B, and 2C constitute a family of lipid kinases that phosphorylate PtdIns5P to PtdIns(4,5)P 2 They are involved in stress signaling, act as synthetic lethal targets in p53-null tumors, and in mice, the loss of PIP4K2C leads to late onset hyperinflammation. Accordingly, a human single nucleotide polymorphism (SNP) near the PIP4K2C gene is linked with susceptibility to autoimmune diseases. How PIP4Ks impact on human T cell signaling is not known. Using ex vivo human primary T cells, we found that PIP4K activity is required for Treg cell signaling and immunosuppressive activity. Genetic and pharmacological inhibition of PIP4K in Tregs reduces signaling through the PI3K, mTORC1/S6, and MAPK pathways, impairs cell proliferation, and increases activation-induced cell death while sparing Tconv. PIP4K and PI3K signaling regulate the expression of the Treg master transcriptional activator FOXP3 and the epigenetic signaling protein Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1). Our studies suggest that the pharmacological inhibition of PIP4K can reprogram human Treg identity while leaving Tconv cell signaling and T-helper differentiation to largely intact potentially enhancing overall immunological activity.
    Matched MeSH terms: Gene Expression Regulation, Enzymologic/drug effects; Gene Expression Regulation, Enzymologic/immunology; Gene Expression Regulation, Enzymologic/physiology
  2. Zhang X, Liew KJ, Cao L, Wang J, Chang Z, Tan MCY, et al.
    J Med Microbiol, 2024 Jul;73(7).
    PMID: 38967406 DOI: 10.1099/jmm.0.001841
    Introduction. Cold plasma is frequently utilized for the purpose of eliminating microbial contaminants. Under optimal conditions, it can function as plasma medicine for treating various diseases, including infections caused by Candida albicans, an opportunistic pathogen that can overgrow in individuals with weakened immune system.Gap Statement. To date, there has been less molecular study on cold plasma-treated C. albicans.Research Aim. The study aims to fill the gap in understanding the molecular response of C. albicans to cold plasma treatment.Methodology. This project involved testing a cold plasma generator to determine its antimicrobial effectiveness on C. albicans' planktonic cells. Additionally, the cells' transcriptomics responses were investigated using RNA sequencing at various treatment durations (1, 3 and 5 min).Results. The results show that our cold plasma effectively eliminates C. albicans. Cold plasma treatment resulted in substantial downregulation of important pathways, such as 'nucleotide metabolism', 'DNA replication and repair', 'cell growth', 'carbohydrate metabolism' and 'amino acid metabolism'. This was an indication of cell cycle arrest of C. albicans to preserve energy consumption under unfavourable conditions. Nevertheless, C. albicans adapted its GSH antioxidant system to cope with the oxidative stress induced by reactive oxygen species, reactive nitrogen species and other free radicals. The treatment likely led to a decrease in cell pathogenicity as many virulence factors were downregulated.Conclusion. The study demonstrated the major affected pathways in cold plasma-treated C. albicans, providing valuable insights into the molecular response of C. albicans to cold plasma treatment. The findings contribute to the understanding of the antimicrobial efficiency of cold plasma and its potential applications in the field of microbiology.
    Matched MeSH terms: Gene Expression Regulation, Fungal
  3. Zhang H, Mo Y, Wang L, Zhang H, Wu S, Sandai D, et al.
    Front Immunol, 2024;15:1339647.
    PMID: 38660311 DOI: 10.3389/fimmu.2024.1339647
    INTRODUCTION: Over the past decades, immune dysregulation has been consistently demonstrated being common charactoristics of endometriosis (EM) and Inflammatory Bowel Disease (IBD) in numerous studies. However, the underlying pathological mechanisms remain unknown. In this study, bioinformatics techniques were used to screen large-scale gene expression data for plausible correlations at the molecular level in order to identify common pathogenic pathways between EM and IBD.

    METHODS: Based on the EM transcriptomic datasets GSE7305 and GSE23339, as well as the IBD transcriptomic datasets GSE87466 and GSE126124, differential gene analysis was performed using the limma package in the R environment. Co-expressed differentially expressed genes were identified, and a protein-protein interaction (PPI) network for the differentially expressed genes was constructed using the 11.5 version of the STRING database. The MCODE tool in Cytoscape facilitated filtering out protein interaction subnetworks. Key genes in the PPI network were identified through two topological analysis algorithms (MCC and Degree) from the CytoHubba plugin. Upset was used for visualization of these key genes. The diagnostic value of gene expression levels for these key genes was assessed using the Receiver Operating Characteristic (ROC) curve and Area Under the Curve (AUC) The CIBERSORT algorithm determined the infiltration status of 22 immune cell subtypes, exploring differences between EM and IBD patients in both control and disease groups. Finally, different gene expression trends shared by EM and IBD were input into CMap to identify small molecule compounds with potential therapeutic effects.

    RESULTS: 113 differentially expressed genes (DEGs) that were co-expressed in EM and IBD have been identified, comprising 28 down-regulated genes and 86 up-regulated genes. The co-expression differential gene of EM and IBD in the functional enrichment analyses focused on immune response activation, circulating immunoglobulin-mediated humoral immune response and humoral immune response. Five hub genes (SERPING1、VCAM1、CLU、C3、CD55) were identified through the Protein-protein Interaction network and MCODE.High Area Under the Curve (AUC) values of Receiver Operating Characteristic (ROC) curves for 5hub genes indicate the predictive ability for disease occurrence.These hub genes could be used as potential biomarkers for the development of EM and IBD. Furthermore, the CMap database identified a total of 9 small molecule compounds (TTNPB、CAY-10577、PD-0325901 etc.) targeting therapeutic genes for EM and IBD.

    DISCUSSION: Our research revealed common pathogenic mechanisms between EM and IBD, particularly emphasizing immune regulation and cell signalling, indicating the significance of immune factors in the occurence and progression of both diseases. By elucidating shared mechanisms, our study provides novel avenues for the prevention and treatment of EM and IBD.

    Matched MeSH terms: Gene Expression Regulation
  4. Evans KV, Ransom E, Nayakoti S, Wilding B, Mohd Salleh F, Gržina I, et al.
    Sci Rep, 2024 Apr 02;14(1):7756.
    PMID: 38565965 DOI: 10.1038/s41598-024-58161-0
    SAG21/LEA5 is an unusual late embryogenesis abundant protein in Arabidopsis thaliana, that is primarily mitochondrially located and may be important in regulating translation in both chloroplasts and mitochondria. SAG21 expression is regulated by a plethora of abiotic and biotic stresses and plant growth regulators indicating a complex regulatory network. To identify key transcription factors regulating SAG21 expression, yeast-1-hybrid screens were used to identify transcription factors that bind the 1685 bp upstream of the SAG21 translational start site. Thirty-three transcription factors from nine different families bound to the SAG21 promoter, including members of the ERF, WRKY and NAC families. Key binding sites for both NAC and WRKY transcription factors were tested through site directed mutagenesis indicating the presence of cryptic binding sites for both these transcription factor families. Co-expression in protoplasts confirmed the activation of SAG21 by WRKY63/ABO3, and SAG21 upregulation elicited by oligogalacturonide elicitors was partially dependent on WRKY63, indicating its role in SAG21 pathogen responses. SAG21 upregulation by ethylene was abolished in the erf1 mutant, while wound-induced SAG21 expression was abolished in anac71 mutants, indicating SAG21 expression can be regulated by several distinct transcription factors depending on the stress condition.
    Matched MeSH terms: Gene Expression Regulation, Plant
  5. Ong SY, Pratap CB, Wan X, Hou S, Abdul Rahman AY, Saito JA, et al.
    J Bacteriol, 2012 Apr;194(8):2115-6.
    PMID: 22461552 DOI: 10.1128/JB.00121-12
    We report here the complete genome sequence of Salmonella enterica subsp. enterica serovar Typhi P-stx-12, a clinical isolate obtained from a typhoid carrier in India.
    Matched MeSH terms: Gene Expression Regulation, Bacterial
  6. Abd-Hamid NA, Ismail I
    J Plant Physiol, 2024 Sep;300:154299.
    PMID: 38936241 DOI: 10.1016/j.jplph.2024.154299
    The F-box protein (FBP) family plays diverse functions in the plant kingdom, with the function of many members still unrevealed. In this study, a specific FBP called PmFBK2, containing Kelch repeats from Persicaria minor, was functionally investigated. Employing the yeast two-hybrid (Y2H) assay, PmFBK2 was found to interact with Skp1-like proteins from P. minor, suggesting its potential to form an E3 ubiquitin ligase, known as the SCF complex. Y2H and co-immunoprecipitation tests revealed that PmFBK2 interacts with full-length PmGID1b. The interaction marks the first documented binding between these two protein types, which have never been reported in other plants before, and they exhibited a negative effect on gibberellin (GA) signal transduction. The overexpression of PmFBK2 in the kmd3 mutant, a homolog from Arabidopsis, demonstrated the ability of PmFBK2 to restore the function of the mutated KMD3 gene. The function restoration was supported by morphophysiological and gene expression analyses, which exhibited patterns similar to the wild type (WT) compared to the kmd3 mutant. Interestingly, the overexpression of PmFBK2 or PmGID1b in Arabidopsis had opposite effects on rosette diameter, seed weight, and plant height. This study provides new insights into the complex GA signalling. It highlights the crucial roles of the interaction between FBP and the GA receptor (GID1b) in regulating GA responses. These findings have implications for developing strategies to enhance plant growth and yield by modulating GA signalling in crops.
    Matched MeSH terms: Gene Expression Regulation, Plant
  7. Chong ZX, Ho WY, Yeap SK
    Life Sci, 2024 Jun 15;347:122609.
    PMID: 38580197 DOI: 10.1016/j.lfs.2024.122609
    LIM domains kinase 2 (LIMK2) is a 72 kDa protein that regulates actin and cytoskeleton reorganization. Once phosphorylated by its upstream activator (ROCK1), LIMK2 can phosphorylate cofilin to inactivate it. This relieves the levering stress on actin and allows polymerization to occur. Actin rearrangement is essential in regulating cell cycle progression, apoptosis, and migration. Dysregulation of the ROCK1/LIMK2/cofilin pathway has been reported to link to the development of various solid cancers such as breast, lung, and prostate cancer and liquid cancer like leukemia. This review aims to assess the findings from multiple reported in vitro, in vivo, and clinical studies on the potential tumour-regulatory role of LIMK2 in different human cancers. The findings of the selected literature unraveled that activated AKT, EGF, and TGF-β pathways can upregulate the activities of the ROCK1/LIMK2/cofilin pathway. Besides cofilin, LIMK2 can modulate the cellular levels of other proteins, such as TPPP1, to promote microtubule polymerization. The tumour suppressor protein p53 can transactivate LIMK2b, a splice variant of LIMK2, to induce cell cycle arrest and allow DNA repair to occur before the cell enters the next phase of the cell cycle. Additionally, several non-coding RNAs, such as miR-135a and miR-939-5p, could also epigenetically regulate the expression of LIMK2. Since the expression of LIMK2 is dysregulated in several human cancers, measuring the tissue expression of LIMK2 could potentially help diagnose cancer and predict patient prognosis. As LIMK2 could play tumour-promoting and tumour-inhibiting roles in cancer development, more investigation should be conducted to carefully evaluate whether introducing a LIMK2 inhibitor in cancer patients could slow cancer progression without posing clinical harms.
    Matched MeSH terms: Gene Expression Regulation, Neoplastic
  8. Akhilesh M, Mahalingam V, Nalliah S, Ali RM, Ganesalingam M, Haleagrahara N
    Biomed Rep, 2013 Mar;1(2):257-258.
    PMID: 24648931
    The aim of this study was to determine whether or not the increased levels of hypoxia-inducible factor-1α (HIF-1α) could be used to demonstrate failed placentation in pre-eclamptic mothers. Twenty pregnant females with (pre-eclampsia group) or without pre-eclampsia (control group) were included in the present study. Antenatal and post-delivery HIF-1α transcription factor levels were measured. A significant increase was observed in the HIF-1α levels in the pre- and post-natal pre-eclampsia mothers. The findings suggest that the levels of HIF-1α in the blood of mothers with pre-eclampsia decrease after delivery of the placenta. The results confirm that there is increased HIF-1α in pre-eclampsia and a steady increase in the levels of HIF-1α could be commensurate with the possibility of a patient developing pre-eclampsia at a later trimester.
    Matched MeSH terms: Gene Expression Regulation
  9. Nurul-Syakima AM, Learn-Han L, Yoke-Kqueen C
    Asian Pac J Cancer Prev, 2014;15(21):9071-5.
    PMID: 25422181
    BACKGROUND: microRNAs are small non-coding RNA that control gene expression by mRNA degradation or translational inhibition. These molecules are known to play essential roles in many biological and physiological processes. miR-205 may be differentially expressed in head and neck cancers; however, there are conflicting data and localization of expression has yet to be determined.

    MATERIALS AND METHODS: miR-205 expression was investigated in 48 cases of inflammatory, benign and malignant tumor tissue array of the neck, oronasopharynx, larynx and salivary glands by Locked Nucleic Acid in situ hybridization (LNA-ISH) technology.

    RESULTS: miR-205 expression was significantly differentially expressed across all of the inflammatory, benign and malignant tumor tissues of the neck. A significant increase in miR-205 staining intensity (p<0.05) was observed from inflammation to benign and malignant tumors in head and neck tissue array, suggesting that miR-205 could be a biomarker to differentiate between cancer and non-cancer tissues.

    CONCLUSIONS: LNA-ISH revealed that miR-205 exhibited significant differential cytoplasmic and nuclear staining among inflammation, benign and malignant tumors of head and neck. miR-205 was not only exclusively expressed in squamous epithelial malignancy. This study offers information and a basis for a comprehensive study of the role of miR-205 that may be useful as a biomarker and/or therapeutic target in head and neck tumors.

    Matched MeSH terms: Gene Expression Regulation, Neoplastic*
  10. Zulkifli I, Najafi P, Nurfarahin AJ, Soleimani AF, Kumari S, Aryani AA, et al.
    Poult Sci, 2014 Dec;93(12):3112-8.
    PMID: 25306460 DOI: 10.3382/ps.2014-04099
    An experiment was conducted to determine the effect of corticosterone (CORT) administration on serum ovotransferrin (OVT), α1-acid glycoprotein (AGP), ceruloplasmin (CPN), and IL-6 concentrations, and brain heat shock protein (HSP) 70 expression in broiler chickens. From 14 to 20 d of age, equal numbers of birds were subjected to either (i) daily intramuscular injection with CORT in ethanol:saline (1:1, vol/vol) at 6 mg/kg of BW, or (ii) daily intramuscular injection with 0.5 mL ethanol:saline (1:1, vol/vol; control). Blood samples were collected before CORT treatment (14 d old), 3 and 7 d after CORT injections, and 4 d after cessation of CORT administration for determination of serum levels of CORT, OVT, AGP, CPN, and IL-6. Brain samples (whole cerebrum) were collected to measure HSP 70 density. Although CORT administration significantly increased feed intake, weight gain was significantly depressed. Administration of CORT also increased CORT, OVT, CPN, AGP, IL-6, and HSP 70 expression. Four days following cessation of CORT administration, OVT declined to the basal level but not CPN and AGP. In conclusion, an elevation in CORT can induce an acute-phase response and HSP 70 expression. Thus, APP and HSP 70 may be of value as indicators of stress in poultry.
    Matched MeSH terms: Gene Expression Regulation/drug effects
  11. Sonaimuthu P, Fong MY, Kalyanasundaram R, Mahmud R, Lau YL
    Parasit Vectors, 2014;7:297.
    PMID: 24986686 DOI: 10.1186/1756-3305-7-297
    Toxoplasma gondii infects all warm-blooded animals, including humans. Early diagnosis and determining the infective stage are critical for effectively treating immunosuppressed individuals and pregnant women with toxoplasmosis. Among the rhoptry proteins of the parasite, Rhoptry protein 8 (ROP8), is known to be expressed during the early stages of T. gondii infection and is involved in parasitophorous vacuole formation. In this study, we have investigated the diagnostic efficacy of recombinant ROP8 (rROP8).
    Matched MeSH terms: Gene Expression Regulation/physiology*
  12. Yong HY, Zou Z, Kok EP, Kwan BH, Chow K, Nasu S, et al.
    Biomed Res Int, 2014;2014:467395.
    PMID: 25177691 DOI: 10.1155/2014/467395
    Amphidiploid species in the Brassicaceae family, such as Brassica napus, are more tolerant to environmental stress than their diploid ancestors.A relatively salt tolerant B. napus line, N119, identified in our previous study, was used. N119 maintained lower Na(+) content, and Na(+)/K(+) and Na(+)/Ca(2+) ratios in the leaves than a susceptible line. The transcriptome profiles of both the leaves and the roots 1 h and 12 h after stress were investigated. De novo assembly of individual transcriptome followed by sequence clustering yielded 161,537 nonredundant sequences. A total of 14,719 transcripts were differentially expressed in either organs at either time points. GO and KO enrichment analyses indicated that the same 49 GO terms and seven KO terms were, respectively, overrepresented in upregulated transcripts in both organs at 1 h after stress. Certain overrepresented GO term of genes upregulated at 1 h after stress in the leaves became overrepresented in genes downregulated at 12 h. A total of 582 transcription factors and 438 transporter genes were differentially regulated in both organs in response to salt shock. The transcriptome depicting gene network in the leaves and the roots regulated by salt shock provides valuable information on salt resistance genes for future application to crop improvement.
    Matched MeSH terms: Gene Expression Regulation, Plant/physiology
  13. Tan HT, Ellis JA, Koplin JJ, Martino D, Dang TD, Suaini N, et al.
    Pediatr Allergy Immunol, 2014 Oct;25(6):608-10.
    PMID: 24912553 DOI: 10.1111/pai.12245
    Matched MeSH terms: Gene Expression Regulation/genetics
  14. Al-Maleki AR, Mariappan V, Vellasamy KM, Shankar EM, Tay ST, Vadivelu J
    J Proteomics, 2014 Jun 25;106:205-20.
    PMID: 24742602 DOI: 10.1016/j.jprot.2014.04.005
    Colony morphology variation is a characteristic of Burkholderia pseudomallei primary clinical isolates, associated with variations in expression of virulence factors. Here, we performed comparative investigations on adhesion, invasion, plaque-forming abilities and protein profiles of B. pseudomallei wild-type (WT) and a small colony variant (SCV). The percentage of SCV adherence to A549 cells was significantly higher (2.73%) than WT (1.91%). In contrast, WT was significantly more efficient (0.63%) than SCV (0.31%) in invasiveness and in inducing cellular damage. Using 2-DE and MALDI TOF/TOF, 263 and 258 protein spots were detected in WT and SCV, respectively. Comparatively, 49 proteins were differentially expressed in SCV when compared with WT. Of these, 31 proteins were up-regulated, namely, nucleoside diphosphate kinase (Ndk), phosphoglycerate kinase (Pgk), thioredoxin (TrxA), putative ferritin DPS-family DNA-binding protein (DPS) and oxidoreductase (AhpC) that are known to be involved in adhesion, intracellular survival and persistence. However, among the 18 down-regulated proteins, enolase (Eno), elongation factor (EF-Tu) and universal stress-related proteins were associated with invasion and virulence. Differences observed in these protein profiles provide ample clues to their association with the morphotypic and phenotypic characteristics of colony variants, providing additional insights into the potential association of B. pseudomallei colony morphotypes with disease pathogenesis.
    Matched MeSH terms: Gene Expression Regulation, Bacterial*
  15. Ebrahimi M, Rajion MA, Meng GY, Soleimani Farjam A
    Biomed Res Int, 2014;2014:749341.
    PMID: 24719886 DOI: 10.1155/2014/749341
    In this study, control chevon (goat meat) and omega-3 fatty acid enriched chevon were obtained from goats fed a 50% oil palm frond diet and commercial goat concentrate for 100 days, respectively. Goats fed the 50% oil palm frond diet contained high amounts of α-linolenic acid (ALA) in their meat compared to goats fed the control diet. The chevon was then used to prepare two types of pellets (control or enriched chevon) that were then fed to twenty-male-four-month-old Sprague-Dawley rats (n = 10 in each group) for 12 weeks to evaluate their effects on plasma cholesterol levels, tissue fatty acids, and gene expression. There was a significant increase in ALA and docosahexaenoic acid (DHA) in the muscle tissues and liver of the rats fed the enriched chevon compared with the control group. Plasma cholesterol also decreased (P < 0.05) in rats fed the enriched chevon compared to the control group. The rat pellets containing enriched chevon significantly upregulated the key transcription factor PPAR-γ and downregulated SREBP-1c expression relative to the control group. The results showed that the omega-3 fatty acid enriched chevon increased the omega-3 fatty acids in the rat tissues and altered PPAR-γ and SREBP-1c genes expression.
    Matched MeSH terms: Gene Expression Regulation/drug effects*
  16. Ali Hassan NZ, Mokhtar NM, Kok Sin T, Mohamed Rose I, Sagap I, Harun R, et al.
    PLoS One, 2014;9(4):e92553.
    PMID: 24694993 DOI: 10.1371/journal.pone.0092553
    Integrative analyses of multiple genomic datasets for selected samples can provide better insight into the overall data and can enhance our knowledge of cancer. The objective of this study was to elucidate the association between copy number variation (CNV) and gene expression in colorectal cancer (CRC) samples and their corresponding non-cancerous tissues. Sixty-four paired CRC samples from the same patients were subjected to CNV profiling using the Illumina HumanOmni1-Quad assay, and validation was performed using multiplex ligation probe amplification method. Genome-wide expression profiling was performed on 15 paired samples from the same group of patients using the Affymetrix Human Gene 1.0 ST array. Significant genes obtained from both array results were then overlapped. To identify molecular pathways, the data were mapped to the KEGG database. Whole genome CNV analysis that compared primary tumor and non-cancerous epithelium revealed gains in 1638 genes and losses in 36 genes. Significant gains were mostly found in chromosome 20 at position 20q12 with a frequency of 45.31% in tumor samples. Examples of genes that were associated at this cytoband were PTPRT, EMILIN3 and CHD6. The highest number of losses was detected at chromosome 8, position 8p23.2 with 17.19% occurrence in all tumor samples. Among the genes found at this cytoband were CSMD1 and DLC1. Genome-wide expression profiling showed 709 genes to be up-regulated and 699 genes to be down-regulated in CRC compared to non-cancerous samples. Integration of these two datasets identified 56 overlapping genes, which were located in chromosomes 8, 20 and 22. MLPA confirmed that the CRC samples had the highest gains in chromosome 20 compared to the reference samples. Interpretation of the CNV data in the context of the transcriptome via integrative analyses may provide more in-depth knowledge of the genomic landscape of CRC.
    Matched MeSH terms: Gene Expression Regulation, Neoplastic*
  17. Ker-Woon C, Abd Ghafar N, Hui CK, Mohd Yusof YA
    BMC Cell Biol., 2014;15:19.
    PMID: 24885607 DOI: 10.1186/1471-2121-15-19
    Acacia honey is a natural product which has proven to have therapeutic effects on skin wound healing, but its potential healing effects in corneal wound healing have not been studied. This study aimed to explore the effects of Acacia honey (AH) on corneal keratocytes morphology, proliferative capacity, cell cycle, gene and protein analyses. Keratocytes from the corneal stroma of six New Zealand white rabbits were isolated and cultured until passage 1. The optimal dose of AH in the basal medium (FD) and medium containing serum (FDS) for keratocytes proliferation was identified using MTT assay. The morphological changes, gene and protein expressions of aldehyde dehydrogenase (ALDH), marker for quiescent keratocytes and vimentin, marker for fibroblasts were detected using q-RTPCR and immunocytochemistry respectively. Flowcytometry was performed to evaluate the cell cycle analysis of corneal keratocytes.
    Matched MeSH terms: Gene Expression Regulation/drug effects
  18. Golbabapour S, Gwaram NS, Al-Obaidi MM, Soleimani AF, Ali HM, Abdul Majid N
    Biomed Res Int, 2013;2013:703626.
    PMID: 24298554 DOI: 10.1155/2013/703626
    Schiff base complexes have appeared to be promising in the treatment of different diseases and disorders and have drawn a lot of attention to their biological activities. This study was conducted to evaluate the regulatory effect of Schiff base metal derivatives on the expression of heat shock proteins (HSP) 70 and BAX in protection against acute haemorrhagic gastric ulcer in rats. Rats were assigned to 6 groups of 6 rats: the normal control (Tween 20 5% v/v, 5 mL/kg), the positive control (Tween 20 5% v/v, 5 mL/kg), and four Schiff base derivative groups named Schiff_1, Schiff_2, Schiff_3, and Schiff_4 (25 mg/kg). After 1 h, all of the groups received ethanol 95% (5 mL/kg) but the normal control received Tween 20 (Tween 20 5% v/v, 5 mL/kg). The animals were euthanized after 60 min and the stomachs were dissected for histology (H&E), immunohistochemistry, and western blot analysis against HSP70 and BAX proteins. The results showed that the Schiff base metal derivatives enhanced the expression of HSP70 and suppressed the expression of BAX proteins during their gastroprotection against ethanol-induced gastric lesion in rats.
    Matched MeSH terms: Gene Expression Regulation/drug effects*
  19. Low CF, Shamsudin MN, Abdullah M, Chee HY, Aliyu-Paiko M
    J Fish Dis, 2015 Jan;38(1):17-25.
    PMID: 24397626 DOI: 10.1111/jfd.12195
    The mechanisms through which brown-marbled grouper accomplishes resistance to infection, particularly against Vibrios, are not yet fully understood. In this study, brown-marbled grouper fingerlings were experimentally infected with Vibrio parahaemolyticus, to identify disease resistance grouper, and the serum proteome profiles were compared between resistant and susceptible candidates, via two-dimensional gel electrophoresis (2-DE). The results showed that putative parvalbumin beta-2 subunit I, alpha-2-macroglobulin, nattectin and immunoglobulin light chain proteins were among proteins that significantly overexpressed in the resistant fish as compared to the susceptible group of fish, whereas apolipoprotein E and immunoglobulin light chain proteins were observed to be differentially overexpressed in the susceptible fish. Further analysis by peptide sequencing revealed that the immunoglobulin light chain proteins identified in the resistant and susceptible groups differed in amino acid composition. Taken together, the results demonstrated for the first time that putative parvalbumin beta-2 subunit I, alpha-2-macroglobulin, nattectin and immunoglobulin light chain are among important proteins participating to effect disease resistance mechanism in fish and were overexpressed to function collectively to resist V. parahaemolyticus infection. Most of these molecules are mediators of immune response.
    Matched MeSH terms: Gene Expression Regulation/immunology*
  20. Low CF, Shamsudin MN, Chee HY, Aliyu-Paiko M, Idrus ES
    J Fish Dis, 2014 Aug;37(8):693-701.
    PMID: 24304156 DOI: 10.1111/jfd.12153
    The gram-negative bacterium, Vibrio alginolyticus, has frequently been identified as the pathogen responsible for the infectious disease called vibriosis. This disease is one of the major challenges facing brown-marbled grouper aquaculture, causing fish farmers globally to suffer substantial economic losses. The objective of this study was to investigate the proteins involved in the immune response of brown-marbled grouper fingerlings during their initial encounter with pathogenic organisms. To achieve this objective, a challenge experiment was performed, in which healthy brown-marbled grouper fingerlings were divided into two groups. Fish in the treated group were subjected to intraperitoneal injection with an infectious dose of V. alginolyticus suspended in phosphate-buffered saline (PBS), and those in the control group were injected with an equal volume of PBS. Blood samples were collected from a replicate number of fish from both groups at 4 h post-challenge and analysed for immune response-related serum proteins via two-dimensional gel electrophoresis. The results showed that 14 protein spots were altered between the treated and control groups; these protein spots were further analysed to determine the identity of each protein via MALDI-TOF/TOF. Among the altered proteins, three were clearly overexpressed in the treated group compared with the control; these were identified as putative apolipoprotein A-I, natural killer cell enhancement factor and lysozyme g. Based on these results, these three highly expressed proteins participate in immune response-related reactions during the initial exposure (4 h) of brown-marbled grouper fingerling to V. alginolyticus infection.
    Matched MeSH terms: Gene Expression Regulation/immunology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links