RESULTS: The lysis buffer 2 (LB2) has been shown to be the best lysis buffer for DNA extraction from both raw and processed meat samples comparing to other lysis buffers tested. Hence, the LB2 has been found to be ideal to detect meat and porcine DNAs by real-time PCR using pairs of porcine specific primers and universal primers which amplified at 119 bp fragment and 93 bp fragment, respectively. This assay allows detection as low as 0.0001 ng of DNA. Higher efficiency and sensitivity of real-time PCR via a simplified DNA extraction method using LB2 have been observed, as well as a reproducible and high correlation coefficient (R2 = 0.9979) based on the regression analysis of the standard curve have been obtained.
CONCLUSION: This study has established a fast, simple, inexpensive and efficient DNA extraction method that is feasible for raw and processed meat products. This extraction technique allows an accurate DNA detection by real-time PCR and can also be implemented to assist the halal authentication of various meat-based products available in the market. © 2019 Society of Chemical Industry.
METHODS: Concentration of Po²¹⁰ was determined in the edible muscle of seafood and water from the coastal area of Kapar, Malaysia using radiochemical separation and the Alpha Spectrometry technique.
RESULTS: The activities of Po²¹⁰ in the dissolved phase of water samples ranged between 0.51 ± 0.21 and 0.71 ± 0.24 mBql⁻¹ whereas the particulate phase registered a range of 50.34 ± 11.40 to 72.07 ± 21.20 Bqkg⁻¹. The ranges of Po²¹⁰ activities in the organism samples were 4.4 ± 0.12 to 6.4 ± 0.95 Bqkg⁻¹ dry wt in fish (Arius maculatus), 45.7 ± 0.86 to 54.4 ± 1.58 Bqkg⁻¹ dry wt in shrimp (Penaeus merguiensis) and 104.3 ± 3.44 to 293.8 ± 10.04 Bqkg⁻¹ dry wt in cockle (Anadara granosa). The variation of Po²¹⁰ in organisms is dependent on the mode of their life style, ambient water concentration and seasonal changes. The concentration factors calculated for fish and molluscs were higher than the recommended values by the IAEA. An assessment of daily intake and received dose due to the consumption of seafood was also carried out and found to be 2083.85 mBqday⁻¹person⁻¹ and 249.30 μSvyr⁻¹ respectively. These values are comparatively higher than reported values in other countries. Moreover, the transformation of Po²¹⁰ in the human body was calculated and revealed that a considerable amount of Po²¹⁰ can be absorbed in the internal organs. The calculated values of life time mortality and morbidity cancer risks were 24.8 × 10⁻⁴ and 34 × 10⁻⁴ respectively which also exceeded the recommended limits set by the ICRP.
CONCLUSIONS: The findings of this present study can be used to evaluate the safety dose uptake level of seafood as well as to monitor environmental health. However, as the calculated dose and cancer risks were found to cross the limit of safety, finding a realistic way to moderate the risk is imperative.