Displaying publications 201 - 220 of 391 in total

Abstract:
Sort:
  1. Kc S, Lin LW, Bayani DBS, Zemlyanska Y, Adler A, Ahn J, et al.
    PMID: 37579427 DOI: 10.34172/ijhpm.2023.6858
    BACKGROUND: Globally, there is increasing interest in the use of real-world data (RWD) and real-world evidence (RWE) to inform health technology assessment (HTA) and reimbursement decision-making. Using current practices and case studies shared by eleven health systems in Asia, a non-binding guidance that seeks to align practices for generating and using RWD/RWE for decision-making in Asia was developed by the REAL World Data In ASia for HEalth Technology Assessment in Reimbursement (REALISE) Working Group, addressing a current gap and needs among HTA users and generators.

    METHODS: The guidance document was developed over two face-to-face workshops, in addition to an online survey, a face-to-face interview and pragmatic search of literature. The specific focus was on what, where and how to collect RWD/ RWE.

    RESULTS: All 11 REALISE member jurisdictions participated in the online survey and the first in-person workshop, 10 participated in the second in-person workshop, and 8 participated in the in-depth face-to-face interviews. The guidance document was iteratively reviewed by all working group members and the International Advisory Panel. There was substantial variation in: (a) sources and types of RWD being used in HTA, and (b) the relative importance and prioritization of RWE being used for policy-making. A list of national-level databases and other sources of RWD available in each country was compiled. A list of useful guidance on data collection, quality assurance and study design were also compiled.

    CONCLUSION: The REALISE guidance document serves to align the collection of better quality RWD and generation of reliable RWE to ultimately inform HTA in Asia.

  2. Toh HC, Yang MH, Wang HM, Hsieh CY, Chitapanarux I, Ho KF, et al.
    Ann Oncol, 2024 Dec;35(12):1181-1190.
    PMID: 39241963 DOI: 10.1016/j.annonc.2024.08.2344
    BACKGROUND: Epstein-Barr virus-specific cytotoxic T lymphocyte (EBV-CTL) is an autologous adoptive T-cell immunotherapy generated from the blood of individuals and manufactured without genetic modification. In a previous phase II trial of locally recurrent or metastatic nasopharyngeal carcinoma (R/M NPC) patients, first-line gemcitabine and carboplatin (GC) and EBV-CTL combination demonstrated objective antitumor EBV-CTL activity and a favorable safety profile. The present study explored whether this combined first-line chemo-immunotherapy strategy would produce superior clinical efficacy and better quality of life compared with conventional chemotherapy treatment.

    PATIENTS AND METHODS: This multicenter, randomized, phase III trial evaluated the efficacy and safety of GC followed by EBV-CTL versus GC alone as first-line treatment of R/M NPC patients. Thirty clinical sites in Singapore, Malaysia, Taiwan, Thailand, and the USA were included. Subjects were randomized to first-line GC (four cycles) and EBV-CTL (six cycles) or GC (six cycles) in a 1 : 1 ratio. The primary outcome was overall survival (OS) and secondary outcomes included progression-free survival, objective response rate, clinical benefit rate, quality of life, and safety.

    CLINICALTRIALS: gov identifier: NCT02578641.

    RESULTS: A total of 330 subjects with NPC were enrolled. Most subjects in both treatment arms received four or more cycles of chemotherapy and most subjects in the GC + EBV-CTL group received two or more infusions of EBV-CTL. The central Good Manufacturing Practices (GMP) facility produced sufficient EBV-CTL for 94% of GC + EBV-CTL subjects. The median OS was 25.0 months in the GC + EBV-CTL group and 24.9 months in the GC group (hazard ratio = 1.19; 95% confidence interval 0.91-1.56; P = 0.194). Only one subject experienced a grade 2 serious adverse event related to EBV-CTL.

    CONCLUSIONS: GC + EBV-CTL in subjects with R/M NPC demonstrated a favorable safety profile but no overall improvement in OS versus chemotherapy. This is the largest adoptive T-cell therapy trial reported in solid tumors to date.

  3. Tang C, Yang M, Fang Y, Luo Y, Gao S, Xiao X, et al.
    Nat Plants, 2016 05 23;2(6):16073.
    PMID: 27255837 DOI: 10.1038/nplants.2016.73
    The Para rubber tree (Hevea brasiliensis) is an economically important tropical tree species that produces natural rubber, an essential industrial raw material. Here we present a high-quality genome assembly of this species (1.37 Gb, scaffold N50 = 1.28 Mb) that covers 93.8% of the genome (1.47 Gb) and harbours 43,792 predicted protein-coding genes. A striking expansion of the REF/SRPP (rubber elongation factor/small rubber particle protein) gene family and its divergence into several laticifer-specific isoforms seem crucial for rubber biosynthesis. The REF/SRPP family has isoforms with sizes similar to or larger than SRPP1 (204 amino acids) in 17 other plants examined, but no isoforms with similar sizes to REF1 (138 amino acids), the predominant molecular variant. A pivotal point in Hevea evolution was the emergence of REF1, which is located on the surface of large rubber particles that account for 93% of rubber in the latex (despite constituting only 6% of total rubber particles, large and small). The stringent control of ethylene synthesis under active ethylene signalling and response in laticifers resolves a longstanding mystery of ethylene stimulation in rubber production. Our study, which includes the re-sequencing of five other Hevea cultivars and extensive RNA-seq data, provides a valuable resource for functional genomics and tools for breeding elite Hevea cultivars.
  4. Nairismägi ML, Tan J, Lim JQ, Nagarajan S, Ng CC, Rajasegaran V, et al.
    Leukemia, 2016 06;30(6):1311-9.
    PMID: 26854024 DOI: 10.1038/leu.2016.13
    Epitheliotropic intestinal T-cell lymphoma (EITL, also known as type II enteropathy-associated T-cell lymphoma) is an aggressive intestinal disease with poor prognosis and its molecular alterations have not been comprehensively characterized. We aimed to identify actionable easy-to-screen alterations that would allow better diagnostics and/or treatment of this deadly disease. By performing whole-exome sequencing of four EITL tumor-normal pairs, followed by amplicon deep sequencing of 42 tumor samples, frequent alterations of the JAK-STAT and G-protein-coupled receptor (GPCR) signaling pathways were discovered in a large portion of samples. Specifically, STAT5B was mutated in a remarkable 63% of cases, JAK3 in 35% and GNAI2 in 24%, with the majority occurring at known activating hotspots in key functional domains. Moreover, STAT5B locus carried copy-neutral loss of heterozygosity resulting in the duplication of the mutant copy, suggesting the importance of mutant STAT5B dosage for the development of EITL. Dysregulation of the JAK-STAT and GPCR pathways was also supported by gene expression profiling and further verified in patient tumor samples. In vitro overexpression of GNAI2 mutants led to the upregulation of pERK1/2, a member of MEK-ERK pathway. Notably, inhibitors of both JAK-STAT and MEK-ERK pathways effectively reduced viability of patient-derived primary EITL cells, indicating potential therapeutic strategies for this neoplasm with no effective treatment currently available.
  5. Bruce JP, To KF, Lui VWY, Chung GTY, Chan YY, Tsang CM, et al.
    Nat Commun, 2021 07 07;12(1):4193.
    PMID: 34234122 DOI: 10.1038/s41467-021-24348-6
    Interplay between EBV infection and acquired genetic alterations during nasopharyngeal carcinoma (NPC) development remains vague. Here we report a comprehensive genomic analysis of 70 NPCs, combining whole-genome sequencing (WGS) of microdissected tumor cells with EBV oncogene expression to reveal multiple aspects of cellular-viral co-operation in tumorigenesis. Genomic aberrations along with EBV-encoded LMP1 expression underpin constitutive NF-κB activation in 90% of NPCs. A similar spectrum of somatic aberrations and viral gene expression undermine innate immunity in 79% of cases and adaptive immunity in 47% of cases; mechanisms by which NPC may evade immune surveillance despite its pro-inflammatory phenotype. Additionally, genomic changes impairing TGFBR2 promote oncogenesis and stabilize EBV infection in tumor cells. Fine-mapping of CDKN2A/CDKN2B deletion breakpoints reveals homozygous MTAP deletions in 32-34% of NPCs that confer marked sensitivity to MAT2A inhibition. Our work concludes that NPC is a homogeneously NF-κB-driven and immune-protected, yet potentially druggable, cancer.
  6. Mangano MC, Berlino M, Corbari L, Milisenda G, Lucchese M, Terzo S, et al.
    Environ Sci Policy, 2022 Jan;127:98-110.
    PMID: 34720746 DOI: 10.1016/j.envsci.2021.10.014
    The COVID-19 global pandemic has had severe, unpredictable and synchronous impacts on all levels of perishable food supply chains (PFSC), across multiple sectors and spatial scales. Aquaculture plays a vital and rapidly expanding role in food security, in some cases overtaking wild caught fisheries in the production of high-quality animal protein in this PFSC. We performed a rapid global assessment to evaluate the effects of the COVID-19 pandemic and related emerging control measures on the aquaculture supply chain. Socio-economic effects of the pandemic were analysed by surveying the perceptions of stakeholders, who were asked to describe potential supply-side disruption, vulnerabilities and resilience patterns along the production pipeline with four main supply chain components: a) hatchery, b) production/processing, c) distribution/logistics and d) market. We also assessed different farming strategies, comparing land- vs. sea-based systems; extensive vs. intensive methods; and with and without integrated multi-trophic aquaculture, IMTA. In addition to evaluating levels and sources of economic distress, interviewees were asked to identify mitigation solutions adopted at local / internal (i.e., farm-site) scales, and to express their preference on national / external scale mitigation measures among a set of a priori options. Survey responses identified the potential causes of disruption, ripple effects, sources of food insecurity, and socio-economic conflicts. They also pointed to various levels of mitigation strategies. The collated evidence represents a first baseline useful to address future disaster-driven responses, to reinforce the resilience of the sector and to facilitate the design reconstruction plans and mitigation measures, such as financial aid strategies.
  7. Shang X, Peng Z, Ye Y, Asan, Zhang X, Chen Y, et al.
    EBioMedicine, 2017 Sep;23:150-159.
    PMID: 28865746 DOI: 10.1016/j.ebiom.2017.08.015
    Hemoglobinopathies are among the most common autosomal-recessive disorders worldwide. A comprehensive next-generation sequencing (NGS) test would greatly facilitate screening and diagnosis of these disorders. An NGS panel targeting the coding regions of hemoglobin genes and four modifier genes was designed. We validated the assay by using 2522 subjects affected with hemoglobinopathies and applied it to carrier testing in a cohort of 10,111 couples who were also screened through traditional methods. In the clinical genotyping analysis of 1182 β-thalassemia subjects, we identified a group of additional variants that can be used for accurate diagnosis. In the molecular screening analysis of the 10,111 couples, we detected 4180 individuals in total who carried 4840 mutant alleles, and identified 186 couples at risk of having affected offspring. 12.1% of the pathogenic or likely pathogenic variants identified by our NGS assay, which were undetectable by traditional methods. Compared with the traditional methods, our assay identified an additional at-risk 35 couples. We describe a comprehensive NGS-based test that offers advantages over the traditional screening/molecular testing methods. To our knowledge, this is among the first large-scale population study to systematically evaluate the application of an NGS technique in carrier screening and molecular diagnosis of hemoglobinopathies.
  8. Kim H, Liu Y, Lu K, Chang CS, Sung D, Akl M, et al.
    Nat Nanotechnol, 2023 May;18(5):464-470.
    PMID: 36941360 DOI: 10.1038/s41565-023-01340-3
    Layer transfer techniques have been extensively explored for semiconductor device fabrication as a path to reduce costs and to form heterogeneously integrated devices. These techniques entail isolating epitaxial layers from an expensive donor wafer to form freestanding membranes. However, current layer transfer processes are still low-throughput and too expensive to be commercially suitable. Here we report a high-throughput layer transfer technique that can produce multiple compound semiconductor membranes from a single wafer. We directly grow two-dimensional (2D) materials on III-N and III-V substrates using epitaxy tools, which enables a scheme comprised of multiple alternating layers of 2D materials and epilayers that can be formed by a single growth run. Each epilayer in the multistack structure is then harvested by layer-by-layer mechanical exfoliation, producing multiple freestanding membranes from a single wafer without involving time-consuming processes such as sacrificial layer etching or wafer polishing. Moreover, atomic-precision exfoliation at the 2D interface allows for the recycling of the wafers for subsequent membrane production, with the potential for greatly reducing the manufacturing cost.
  9. Zeng G, Zhu W, Somani B, Choong S, Straub M, Maroccolo MV, et al.
    Urolithiasis, 2024 Sep 04;52(1):124.
    PMID: 39230669 DOI: 10.1007/s00240-024-01621-z
    The aim of this study was to construct the sixth in a series of guidelines on the treatment of urolithiasis by the International Alliance of Urolithiasis (IAU) that by providing a clinical framework for the management of pediatric patients with urolithiasis based on the best available published literature. All recommendations were summarized following a systematic review and assessment of literature in the PubMed database from January 1952 to December 2023. Each generated recommendation was graded using a modified GRADE methodology. Recommendations are agreed upon by Panel Members following review and discussion of the evidence. Guideline recommendations were developed that addressed the following topics: etiology, risk factors, clinical presentation and symptoms, diagnosis, conservative management, surgical interventions, prevention, and follow-up. Similarities in the treatment of primary stone episodes between children and adults, incorporating conservative management and advancements in technology for less invasive stone removal, are evident. Additionally, preventive strategies aiming to reduce recurrence rates, such as ensuring sufficient fluid intake, establishing well-planned dietary adjustments, and selective use pharmacologic therapies will also result in highly successful outcomes in pediatric stone patients. Depending on the severity of metabolic disorders and also anatomical abnormalities, a careful and close follow-up program should inevitably be planned in each pediatric patient to limit the risk of future recurrence rates.
  10. Sun R, Balabanova A, Bajada CJ, Liu Y, Kriuchok M, Voolma SR, et al.
    Emotion, 2024 Mar;24(2):397-411.
    PMID: 37616109 DOI: 10.1037/emo0001235
    The COVID-19 pandemic presents challenges to psychological well-being, but how can we predict when people suffer or cope during sustained stress? Here, we test the prediction that specific types of momentary emotional experiences are differently linked to psychological well-being during the pandemic. Study 1 used survey data collected from 24,221 participants in 51 countries during the COVID-19 outbreak. We show that, across countries, well-being is linked to individuals' recent emotional experiences, including calm, hope, anxiety, loneliness, and sadness. Consistent results are found in two age, sex, and ethnicity-representative samples in the United Kingdom (n = 971) and the United States (n = 961) with preregistered analyses (Study 2). A prospective 30-day daily diary study conducted in the United Kingdom (n = 110) confirms the key role of these five emotions and demonstrates that emotional experiences precede changes in well-being (Study 3). Our findings highlight differential relationships between specific types of momentary emotional experiences and well-being and point to the cultivation of calm and hope as candidate routes for well-being interventions during periods of sustained stress. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
  11. Chu C, Lutz JA, Král K, Vrška T, Yin X, Myers JA, et al.
    Ecol Lett, 2019 Feb;22(2):245-255.
    PMID: 30548766 DOI: 10.1111/ele.13175
    Climate is widely recognised as an important determinant of the latitudinal diversity gradient. However, most existing studies make no distinction between direct and indirect effects of climate, which substantially hinders our understanding of how climate constrains biodiversity globally. Using data from 35 large forest plots, we test hypothesised relationships amongst climate, topography, forest structural attributes (stem abundance, tree size variation and stand basal area) and tree species richness to better understand drivers of latitudinal tree diversity patterns. Climate influences tree richness both directly, with more species in warm, moist, aseasonal climates and indirectly, with more species at higher stem abundance. These results imply direct limitation of species diversity by climatic stress and more rapid (co-)evolution and narrower niche partitioning in warm climates. They also support the idea that increased numbers of individuals associated with high primary productivity are partitioned to support a greater number of species.
  12. Seibold S, Rammer W, Hothorn T, Seidl R, Ulyshen MD, Lorz J, et al.
    Nature, 2021 Sep;597(7874):77-81.
    PMID: 34471275 DOI: 10.1038/s41586-021-03740-8
    The amount of carbon stored in deadwood is equivalent to about 8 per cent of the global forest carbon stocks1. The decomposition of deadwood is largely governed by climate2-5 with decomposer groups-such as microorganisms and insects-contributing to variations in the decomposition rates2,6,7. At the global scale, the contribution of insects to the decomposition of deadwood and carbon release remains poorly understood7. Here we present a field experiment of wood decomposition across 55 forest sites and 6 continents. We find that the deadwood decomposition rates increase with temperature, and the strongest temperature effect is found at high precipitation levels. Precipitation affects the decomposition rates negatively at low temperatures and positively at high temperatures. As a net effect-including the direct consumption by insects and indirect effects through interactions with microorganisms-insects accelerate the decomposition in tropical forests (3.9% median mass loss per year). In temperate and boreal forests, we find weak positive and negative effects with a median mass loss of 0.9 per cent and -0.1 per cent per year, respectively. Furthermore, we apply the experimentally derived decomposition function to a global map of deadwood carbon synthesized from empirical and remote-sensing data, obtaining an estimate of 10.9 ± 3.2 petagram of carbon per year released from deadwood globally, with 93 per cent originating from tropical forests. Globally, the net effect of insects may account for 29 per cent of the carbon flux from deadwood, which suggests a functional importance of insects in the decomposition of deadwood and the carbon cycle.
  13. MalariaGEN, Adam I, Alam MS, Alemu S, Amaratunga C, Amato R, et al.
    Wellcome Open Res, 2022;7:136.
    PMID: 35651694 DOI: 10.12688/wellcomeopenres.17795.1
    This report describes the MalariaGEN Pv4 dataset, a new release of curated genome variation data on 1,895 samples of Plasmodium vivax collected at 88 worldwide locations between 2001 and 2017. It includes 1,370 new samples contributed by MalariaGEN and VivaxGEN partner studies in addition to previously published samples from these and other sources. We provide genotype calls at over 4.5 million variable positions including over 3 million single nucleotide polymorphisms (SNPs), as well as short indels and tandem duplications. This enlarged dataset highlights major compartments of parasite population structure, with clear differentiation between Africa, Latin America, Oceania, Western Asia and different parts of Southeast Asia. Each sample has been classified for drug resistance to sulfadoxine, pyrimethamine and mefloquine based on known markers at the dhfr, dhps and mdr1 loci. The prevalence of all of these resistance markers was much higher in Southeast Asia and Oceania than elsewhere. This open resource of analysis-ready genome variation data from the MalariaGEN and VivaxGEN networks is driven by our collective goal to advance research into the complex biology of P. vivax and to accelerate genomic surveillance for malaria control and elimination.
  14. Trimarsanto H, Amato R, Pearson RD, Sutanto E, Noviyanti R, Trianty L, et al.
    Commun Biol, 2022 Dec 23;5(1):1411.
    PMID: 36564617 DOI: 10.1038/s42003-022-04352-2
    Traditionally, patient travel history has been used to distinguish imported from autochthonous malaria cases, but the dormant liver stages of Plasmodium vivax confound this approach. Molecular tools offer an alternative method to identify, and map imported cases. Using machine learning approaches incorporating hierarchical fixation index and decision tree analyses applied to 799 P. vivax genomes from 21 countries, we identified 33-SNP, 50-SNP and 55-SNP barcodes (GEO33, GEO50 and GEO55), with high capacity to predict the infection's country of origin. The Matthews correlation coefficient (MCC) for an existing, commonly applied 38-SNP barcode (BR38) exceeded 0.80 in 62% countries. The GEO panels outperformed BR38, with median MCCs > 0.80 in 90% countries at GEO33, and 95% at GEO50 and GEO55. An online, open-access, likelihood-based classifier framework was established to support data analysis (vivaxGEN-geo). The SNP selection and classifier methods can be readily amended for other use cases to support malaria control programs.
  15. Romanello M, McGushin A, Di Napoli C, Drummond P, Hughes N, Jamart L, et al.
    Lancet, 2021 Oct 30;398(10311):1619-1662.
    PMID: 34687662 DOI: 10.1016/S0140-6736(21)01787-6
    The Lancet Countdown is an international collaboration that independently monitors the health consequences of a changing climate. Publishing updated, new, and improved indicators each year, the Lancet Countdown represents the consensus of leading researchers from 43 academic institutions and UN agencies. The 44 indicators of this report expose an unabated rise in the health impacts of climate change and the current health consequences of the delayed and inconsistent response of countries around the globe—providing a clear imperative for accelerated action that puts the health of people and planet above all else. The 2021 report coincides with the UN Framework Convention on Climate Change 26th Conference of the Parties (COP26), at which countries are facing pressure to realise the ambition of the Paris Agreement to keep the global average temperature rise to 1·5°C and to mobilise the financial resources required for all countries to have an effective climate response. These negotiations unfold in the context of the COVID-19 pandemic—a global health crisis that has claimed millions of lives, affected livelihoods and communities around the globe, and exposed deep fissures and inequities in the world’s capacity to cope with, and respond to, health emergencies. Yet, in its response to both crises, the world is faced with an unprecedented opportunity to ensure a healthy future for all.

    DEEPENING INEQUITIES IN A WARMING WORLD: Record temperatures in 2020 resulted in a new high of 3·1 billion more person-days of heatwave exposure among people older than 65 years and 626 million more person-days affecting children younger than 1 year, compared with the annual average for the 1986–2005 baseline (indicator 1.1.2). Looking to 2021, people older than 65 years or younger than 1 year, along with people facing social disadvantages, were the most affected by the record-breaking temperatures of over 40°C in the Pacific Northwest areas of the USA and Canada in June, 2021—an event that would have been almost impossible without human-caused climate change. Although the exact number will not be known for several months, hundreds of people have died prematurely from the heat. Furthermore, populations in countries with low and medium levels of UN-defined human development index (HDI) have had the biggest increase in heat vulnerability during the past 30 years, with risks to their health further exacerbated by the low availability of cooling mechanisms and urban green space (indicators 1.1.1, 2.3.2, and 2.3.3). Agricultural workers in countries with low and medium HDI were among the worst affected by exposure to extreme temperatures, bearing almost half of the 295 billion potential work hours lost due to heat in 2020 (indicator 1.1.4). These lost work hours could have devastating economic consequences to these already vulnerable workers—data in this year’s report shows that the average potential earnings lost in countries in the low HDI group were equivalent to 4–8% of the national gross domestic product (indicator 4.1.3). Through these effects, rising average temperatures, and altered rainfall patterns, climate change is beginning to reverse years of progress in tackling the food and water insecurity that still affects the most underserved populations around the world, denying them an essential aspect of good health. During any given month in 2020, up to 19% of the global land surface was affected by extreme drought; a value that had not exceeded 13% between 1950 and 1999 (indicator 1.2.2). In parallel with drought, warm temperatures are affecting the yield potential of the world’s major staple crops—a 6·0% reduction for maize; 3·0% for winter wheat; 5·4% for soybean; and 1·8% for rice in 2020, relative to 1981–2010 (indicator 1.4.1)—exposing the rising risk of food insecurity. Adding to these health hazards, the changing environmental conditions are also increasing the suitability for the transmission of many water-borne, air-borne, food-borne, and vector-borne pathogens. Although socioeconomic development, public health interventions, and advances in medicine have reduced the global burden of infectious disease transmission, climate change could undermine eradication efforts. The number of months with environmentally suitable conditions for the transmission of malaria (Plasmodium falciparum) rose by 39% from 1950–59 to 2010–19 in densely populated highland areas in the low HDI group, threatening highly disadvantaged populations who were comparatively safer from this disease than those in the lowland areas (indicator 1.3.1). The epidemic potential for dengue virus, Zika virus, and chikungunya virus, which currently primarily affect populations in central America, South America, the Caribbean, Africa, and south Asia, increased globally, with a basic reproductive rate increase of 13% for transmission by Aedes aegypti and 7% for transmission by Aedes albopictus compared with the 1950s. The biggest relative increase in basic reproductive rate of these arboviruses was seen in countries in the very high HDI group (indicator 1.3.1); however, people in the low HDI group are confronted with the highest vulnerability to these arboviruses (indicator 1.3.2). Similar findings are observed in the environmental suitability for Vibrio cholerae, a pathogen estimated to cause almost 100 000 deaths annually, particularly among populations with poor access to safe water and sanitation. Between 2003 and 2019, the coastal areas suitable for V cholerae transmission increased substantially across all HDI country groups—although, with 98% of their coastline suitable to the transmission of V cholerae in 2020, it is people in the low HDI country group that have the highest environmental suitability for this disease (indicator 1.3.1). The concurrent and interconnecting risks posed by extreme weather events, infectious disease transmission, and food, water, and financial insecurity are over-burdening the most vulnerable populations. Through multiple simultaneous and interacting health risks, climate change is threatening to reverse years of progress in public health and sustainable development. Even with overwhelming evidence on the health impacts of climate change, countries are not delivering an adaptation response proportionate to the rising risks their populations face. In 2020, 104 (63%) of 166 countries did not have a high level of implementation of national health emergency frameworks, leaving them unprepared to respond to pandemics and climate-related health emergencies (indicator 2.3.1). Importantly, only 18 (55%) of 33 countries with a low HDI had reported at least a medium level of implementation of national health emergency frameworks, compared with 47 (89%) of 53 countries with a very high HDI. In addition, only 47 (52%) of 91 countries reported having a national adaptation plan for health, with insufficient human and financial resources identified as the main barrier for their implementation (indicator 2.1.1). With a world facing an unavoidable temperature rise, even with the most ambitious climate change mitigation, accelerated adaptation is essential to reduce the vulnerabilities of populations to climate change and protect the health of people around the world.

    AN INEQUITABLE RESPONSE FAILS EVERYONE: 10 months into 2021, global and equitable access to the COVID-19 vaccine had not been delivered—more than 60% of people in high-income countries have received at least one dose of a COVID-19 vaccine compared with just 3·5% of people in low-income countries. Data in this report exposes similar inequities in the global climate change mitigation response. To meet the Paris Agreement goals and prevent catastrophic levels of global warming, global greenhouse gas emissions must reduce by half within a decade. However, at the current pace of reduction, it would take more than 150 years for the energy system to fully decarbonise (indicator 3.1), and the unequal response between countries is resulting in an uneven realisation of the health benefits of a low-carbon transition. The use of public funds to subsidise fossil fuels is partly responsible for the slow decarbonisation rate. Of the 84 countries reviewed, 65 were still providing an overall subsidy to fossil fuels in 2018 and, in many cases, subsidies were equivalent to substantial proportions of the national health budget and could have been redirected to deliver net benefits to health and wellbeing. Furthermore, all the 19 countries whose carbon pricing policies outweighed the effect of any fossil fuels subsidies came from the very high HDI group (indicator 4.2.4). Although countries in the very high HDI group have collectively made the most progress in the decarbonisation of the energy system, they are still the main contributors to CO2 emissions through the local production of goods and services, accounting for 45% of the global total (indicator 4.2.5). With a slower pace of decarbonisation and poorer air quality regulations than countries in the very high HDI group, the medium and high HDI country groups produce the most fine particle matter (PM2·5) emissions and have the highest rates of air pollution-related deaths, which are about 50% higher than the total deaths in the very high HDI group (indicator 3.3). The low HDI group, with comparatively lower amounts of industrial activity than in the other groups, has a local production that contributes to only 0·7% of global CO2 emissions, and has the lowest mortality rate from ambient air pollution. However, with only 12% of its inhabitants relying on clean fuels and technologies for cooking, the health of these populations is still at risk from dangerously high concentrations of household air pollution (indicator 3.2). Even in the most affluent countries, people in the most deprived areas over-whelmingly bear the burden of health effects from exposure to air pollution. These findings expose the health costs of the delayed and unequal mitigation response and underscore the millions of deaths to be prevented annually through a low-carbon transition that prioritises the health of all populations. However, the world is not on track to realising the health gains of the transition to a low-carbon economy. Current global decarbonisation commitments are insufficient to meet Paris Agreement ambitions and would lead to a roughly 2·4°C average global temperature increase by the end of the century. The current direction of post-COVID-19 spending is threatening to make this situation worse, with just 18% of all the funds committed for economic recovery from the COVID-19 pandemic by the end of 2020 expected to lead to a reduction of greenhouse gas emissions. Indeed, the economic recovery from the pandemic is already predicted to lead to an unprecedented 5% increase in greenhouse gas emissions in 2021, which will bring global anthropogenic emissions back to their peak amounts. In addition, the current economic recession is threatening to undermine the target of mobilising US$100 billion per year from 2020 onwards to promote low-carbon shifts and adaptation responses in the most underserved countries, even though this quantity is minute compared with the trillions allocated to COVID-19 recovery. The high amounts of borrowing that countries have had to resort to during the pandemic could erase their ability to deliver a green recovery and maximise the health gains to their population of a low-carbon transition.

    AN UNPRECEDENTED OPPORTUNITY TO ENSURE A HEALTHY FUTURE FOR ALL: The overshoot in emissions resulting from a carbon-intensive COVID-19 recovery would irreversibly prevent the world from meeting climate commitments and the Sustainable Development Goals and lock humanity into an increasingly extreme and unpredictable environment. Data in this report expose the health impacts and health inequities of the current world at 1·2°C of warming above pre-industrial levels and supports that, on the current trajectory, climate change will become the defining narrative of human health. However, by directing the trillions of dollars that will be committed to COVID-19 recovery towards the WHO’s prescriptions for a healthy, green recovery, the world could meet the Paris Agreement goals, protect the natural systems that support wellbeing, and minimise inequities through reduced health effects and maximised co-benefits of a universal low-carbon transition. Promoting equitable climate change mitigation and universal access to clean energies could prevent millions of deaths annually from reduced exposure to air pollution, healthier diets, and more active lifestyles, and contribute to reducing health inequities globally. This pivotal moment of economic stimulus represents a historical opportunity to secure the health of present and future generations. There is a glimpse of positive change through several promising trends in this year’s data: electricity generation from renewable wind and solar energy increased by an annual average of 17% between 2013 and 2018 (indicator 3.1); investment in new coal capacity decreased by 10% in 2020 (indicator 4.2.1); and the global number of electric vehicles reached 7·2 million in 2019 (indicator 3.4). Additionally, the global pandemic has driven increased engagement in health and climate change across multiple domains in society, with 91 heads of state making the connection in the 2020 UN General Debate and newly widespread engagement among countries in the very high HDI group (indicator 5.4). Whether COVID-19 recovery supports, or reverses these trends, is yet to be seen. Neither COVID-19 nor climate change respect national borders. Without widespread, accessible vaccination across all countries and societies, SARS-CoV-2 and its new variants will continue to put the health of everybody at risk. Likewise, tackling climate change requires all countries to deliver an urgent and coordinated response, with COVID-19 recovery funds allocated to support and ensure a just transition to a low-carbon future and climate change adaptation across the globe. Leaders of the world have an unprecedented opportunity to deliver a future of improved health, reduced inequity, and economic and environmental sustainability. However, this will only be possible if the world acts together to ensure that no person is left behind.

  16. Watts N, Amann M, Arnell N, Ayeb-Karlsson S, Beagley J, Belesova K, et al.
    Lancet, 2021 Jan 09;397(10269):129-170.
    PMID: 33278353 DOI: 10.1016/S0140-6736(20)32290-X
    For the Chinese, French, German, and Spanish translations of the abstract see Supplementary Materials section.
  17. Watts N, Amann M, Arnell N, Ayeb-Karlsson S, Belesova K, Boykoff M, et al.
    Lancet, 2019 Nov 16;394(10211):1836-1878.
    PMID: 31733928 DOI: 10.1016/S0140-6736(19)32596-6
    The Lancet Countdown is an international, multidisciplinary collaboration, dedicated to monitoring the evolving health profile of climate change, and providing an independent assessment of the delivery of commitments made by governments worldwide under the Paris Agreement. The 2019 report presents an annual update of 41 indicators across five key domains: climate change impacts, exposures, and vulnerability; adaptation, planning, and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. The report represents the findings and consensus of 35 leading academic institutions and UN agencies from every continent. Each year, the methods and data that underpin the Lancet Countdown’s indicators are further developed and improved, with updates described at each stage of this report. The collaboration draws on the world-class expertise of climate scientists; ecologists; mathematicians; engineers; energy, food, and transport experts; economists; social and political scientists; public health professionals; and doctors, to generate the quality and diversity of data required. The science of climate change describes a range of possible futures, which are largely dependent on the degree of action or inaction in the face of a warming world. The policies implemented will have far-reaching effects in determining these eventualities, with the indicators tracked here monitoring both the present-day effects of climate change, as well as the worldwide response. Understanding these decisions as a choice between one of two pathways—one that continues with the business as usual response and one that redirects to a future that remains “well below 2°C”—helps to bring the importance of recognising the effects of climate change and the necessary response to the forefront. Evidence provided by the Intergovernmental Panel on Climate Change, the International Energy Agency, and the US National Aeronautics and Space Administration clarifies the degree and magnitude of climate change experienced today and contextualises these two pathways.

    THE IMPACTS OF CLIMATE CHANGE ON HUMAN HEALTH: The world has observed a 1°C temperature rise above pre-industrial levels, with feedback cycles and polar amplification resulting in a rise as high as 3°C in north western Canada., Eight of the ten hottest years on record have occurred in the past decade. Such rapid change is primarily driven by the combustion of fossil fuels, consumed at a rate of 171 000 kg of coal, 116 000 000 L of gas, and 186 000 L of oil per s.– Progress in mitigating this threat is intermittent at best, with carbon dioxide emissions continuing to rise in 2018. Importantly, many of the indicators contained in this report suggest the world is following this “business as usual” pathway. The carbon intensity of the energy system has remained unchanged since 1990 (indicator 3.1.1), and from 2016 to 2018, total primary energy supply from coal increased by 1·7%, reversing a previously recorded downward trend (indicator 3.1.2). Correspondingly, the health-care sector is responsible for about 4·6% of global emissions, a value which is steadily rising across most major economies (indicator 3.6). Global fossil fuel consumption subsidies increased by 50% over the past 3 years, reaching a peak of almost US$430 billion in 2018 (indicator 4.4.1). A child born today will experience a world that is more than four degrees warmer than the pre-industrial average, with climate change impacting human health from infancy and adolescence to adulthood and old age. Across the world, children are among the worst affected by climate change. Downward trends in global yield potential for all major crops tracked since 1960 threaten food production and food security, with infants often the worst affected by the potentially permanent effects of undernutrition (indicator 1.5.1). Children are among the most susceptible to diarrhoeal disease and experience the most severe effects of dengue fever. Trends in climate suitability for disease transmission are particularly concerning, with nine of the ten most suitable years for the transmission of dengue fever on record occurring since 2000 (indicator 1.4.1). Similarly, since an early 1980s baseline, the number of days suitable for Vibrio (a pathogen responsible for part of the burden of diarrhoeal disease) has doubled, and global suitability for coastal Vibrio cholerae has increased by 9·9% indicator 1.4.1). Through adolescence and beyond, air pollution—principally driven by fossil fuels, and exacerbated by climate change—damages the heart, lungs, and every other vital organ. These effects accumulate over time, and into adulthood, with global deaths attributable to ambient fine particulate matter (PM2·5) remaining at 2·9 million in 2016 (indicator 3.3.2) and total global air pollution deaths reaching 7 million. Later in life, families and livelihoods are put at risk from increases in the frequency and severity of extreme weather conditions, with women among the most vulnerable across a range of social and cultural contexts. Globally, 77% of countries experienced an increase in daily population exposure to wildfires from 2001–14 to 2015–18 (indicator 1.2.1). India and China sustained the largest increases, with an increase of over 21 million exposures in India and 17 million exposures in China over this time period. In low-income countries, almost all economic losses from extreme weather events are uninsured, placing a particularly high burden on individuals and households (indicator 4.1). Temperature rise and heatwaves are increasingly limiting the labour capacity of various populations. In 2018, 133·6 billion potential work hours were lost globally, 45 billion more than the 2000 baseline, and southern areas of the USA lost 15–20% of potential daylight work hours during the hottest month of 2018 (indicator 1.1.4). Populations aged 65 years and older are particularly vulnerable to the health effects of climate change, and especially to extremes of heat. From 1990 to 2018, populations in every region have become more vulnerable to heat and heatwaves, with Europe and the Eastern Mediterranean remaining the most vulnerable (indicator 1.1.1). In 2018, these vulnerable populations experienced 220 million heatwave exposures globally, breaking the previous record of 209 million set in 2015 (indicator 1.1.3). Already faced with the challenge of an ageing population, Japan had 32 million heatwave exposures affecting people aged 65 years and older in 2018, the equivalent of almost every person in this age group experiencing a heatwave. Finally, although difficult to quantify, the downstream risks of climate change, such as migration, poverty exacerbation, violent conflict, and mental illness, affect people of all ages and all nationalities. A business as usual trajectory will result in a fundamentally altered world, with the indicators described providing a glimpse of the implications of this pathway. The life of every child born today will be profoundly affected by climate change. Without accelerated intervention, this new era will come to define the health of people at every stage of their lives.

    RESPONDING TO CLIMATE CHANGE FOR HEALTH: The Paris Agreement has set a target of “holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1·5°C.” In a world that matches this ambition, a child born today would see the phase-out of all coal in the UK and Canada by their sixth and 11th birthday; they would see France ban the sale of petrol and diesel cars by their 21st birthday; and they would be 31 years old by the time the world reaches net-zero in 2050, with the UK’s recent commitment to reach this goal one of many to come. The changes seen in this alternate pathway could result in cleaner air, safer cities, and more nutritious food, coupled with renewed investment in health systems and vital infrastructure. This second path—which limits the global average temperature rise to “well below 2°C”—is possible, and would transform the health of a child born today for the better, right the way through their life. Considering the evidence available in the 2019 indicators, such a transition could be beginning to unfold. Despite a small increase in coal use in 2018, in key countries such as China, it continued to decrease as a share of electricity generation (indicator 3.1.2). Correspondingly, renewables accounted for 45% of global growth in power generation capacity that year, and low-carbon electricity reached a high of 32% of global electricity in 2016 (indicator 3.1.3). Global per capita use of electric vehicles increased by 20·6% between 2015 and 2016, and now represents 1·8% of China’s total transportation fuel use (indicator 3.4). Improvements in air pollution seen in Europe from 2015 to 2016, could result in a reduction of Years of Life Lost (YLL) worth €5·2 billion annually, if this reduction remained constant across a lifetime (indicator 4.2). In several cases, the economic savings from a healthier and more productive workforce, with fewer health-care expenses, will cover the initial investment costs of these interventions. Similarly, cities and health systems are becoming more resilient to the effects of climate change; about 50% of countries and 69% of cities surveyed reported efforts to conduct national health adaptation plans or climate change risk assessments (indicators 2.1.1, 2.1.2, and 2.1.3). These plans are now being implemented, with the number of countries providing climate services to the health sector increasing from 55 in 2018 to 70 in 2019 (indicator 2.2) and 109 countries reporting medium to high implementation of a national health emergency framework (indicator 2.3.1). Growing demand is coupled with a steady increase in health adaptation spending, which represents 5% (£13 billion) of total adaptation funding in 2018 and has increased by 11·8% over the past 12 months (indicator 2.4). This increase is in part funded by growing revenues from carbon pricing mechanisms, with a 30% increase to US$43 billion in funds raised between 2017 and 2018 (indicator 4.4.3). However, current progress is inadequate, and despite the beginnings of the transition described, the indicators published in the Lancet Countdown’s 2019 report are suggestive of a world struggling to cope with warming that is occurring faster than governments are able, or willing to respond. Opportunities are being missed, with the Green Climate Fund yet to receive projects specifically focused on improving climate-related public health, despite the fact that in other forums, leaders of small island developing states are recognising the links between health and climate change (indicator 5.3). In response, the generation that will be most affected by climate change has led a wave of school strikes across the world. Bold new approaches to policy making, research, and business are needed in order to change course. An unprecedented challenge demands an unprecedented response, and it will take the work of the 7·5 billion people currently alive to ensure that the health of a child born today is not defined by a changing climate.

  18. Li Z, Allingham RR, Nakano M, Jia L, Chen Y, Ikeda Y, et al.
    Hum Mol Genet, 2015 Jul 01;24(13):3880-92.
    PMID: 25861811 DOI: 10.1093/hmg/ddv128
    Primary open angle glaucoma (POAG), a major cause of blindness worldwide, is a complex disease with a significant genetic contribution. We performed Exome Array (Illumina) analysis on 3504 POAG cases and 9746 controls with replication of the most significant findings in 9173 POAG cases and 26 780 controls across 18 collections of Asian, African and European descent. Apart from confirming strong evidence of association at CDKN2B-AS1 (rs2157719 [G], odds ratio [OR] = 0.71, P = 2.81 × 10(-33)), we observed one SNP showing significant association to POAG (CDC7-TGFBR3 rs1192415, ORG-allele = 1.13, Pmeta = 1.60 × 10(-8)). This particular SNP has previously been shown to be strongly associated with optic disc area and vertical cup-to-disc ratio, which are regarded as glaucoma-related quantitative traits. Our study now extends this by directly implicating it in POAG disease pathogenesis.
  19. Zhong Y, Chu C, Myers JA, Gilbert GS, Lutz JA, Stillhard J, et al.
    Nat Commun, 2021 May 25;12(1):3137.
    PMID: 34035260 DOI: 10.1038/s41467-021-23236-3
    Arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) associations are critical for host-tree performance. However, how mycorrhizal associations correlate with the latitudinal tree beta-diversity remains untested. Using a global dataset of 45 forest plots representing 2,804,270 trees across 3840 species, we test how AM and EcM trees contribute to total beta-diversity and its components (turnover and nestedness) of all trees. We find AM rather than EcM trees predominantly contribute to decreasing total beta-diversity and turnover and increasing nestedness with increasing latitude, probably because wide distributions of EcM trees do not generate strong compositional differences among localities. Environmental variables, especially temperature and precipitation, are strongly correlated with beta-diversity patterns for both AM trees and all trees rather than EcM trees. Results support our hypotheses that latitudinal beta-diversity patterns and environmental effects on these patterns are highly dependent on mycorrhizal types. Our findings highlight the importance of AM-dominated forests for conserving global forest biodiversity.
  20. Ji F, Tran S, Ogawa E, Huang CF, Suzuki T, Wong YJ, et al.
    J Clin Transl Hepatol, 2024 Jul 28;12(7):646-658.
    PMID: 38993510 DOI: 10.14218/JCTH.2024.00089
    BACKGROUND AND AIMS: As practice patterns and hepatitis C virus (HCV) genotypes (GT) vary geographically, a global real-world study from both East and West covering all GTs can help inform practice policy toward the 2030 HCV elimination goal. This study aimed to assess the effectiveness and tolerability of DAA treatment in routine clinical practice in a multinational cohort for patients infected with all HCV GTs, focusing on GT3 and GT6.

    METHODS: We analyzed the sustained virological response (SVR12) of 15,849 chronic hepatitis C patients from 39 Real-World Evidence from the Asia Liver Consortium for HCV clinical sites in Asia Pacific, North America, and Europe between 07/01/2014-07/01/2021.

    RESULTS: The mean age was 62±13 years, with 49.6% male. The demographic breakdown was 91.1% Asian (52.9% Japanese, 25.7% Chinese/Taiwanese, 5.4% Korean, 3.3% Malaysian, and 2.9% Vietnamese), 6.4% White, 1.3% Hispanic/Latino, and 1% Black/African-American. Additionally, 34.8% had cirrhosis, 8.6% had hepatocellular carcinoma (HCC), and 24.9% were treatment-experienced (20.7% with interferon, 4.3% with direct-acting antivirals). The largest group was GT1 (10,246 [64.6%]), followed by GT2 (3,686 [23.2%]), GT3 (1,151 [7.2%]), GT6 (457 [2.8%]), GT4 (47 [0.3%]), GT5 (1 [0.006%]), and untyped GTs (261 [1.6%]). The overall SVR12 was 96.9%, with rates over 95% for GT1/2/3/6 but 91.5% for GT4. SVR12 for GT3 was 95.1% overall, 98.2% for GT3a, and 94.0% for GT3b. SVR12 was 98.3% overall for GT6, lower for patients with cirrhosis and treatment-experienced (TE) (93.8%) but ≥97.5% for treatment-naive patients regardless of cirrhosis status. On multivariable analysis, advanced age, prior treatment failure, cirrhosis, active HCC, and GT3/4 were independent predictors of lower SVR12, while being Asian was a significant predictor of achieving SVR12.

    CONCLUSIONS: In this diverse multinational real-world cohort of patients with various GTs, the overall cure rate was 96.9%, despite large numbers of patients with cirrhosis, HCC, TE, and GT3/6. SVR12 for GT3/6 with cirrhosis and TE was lower but still excellent (>91%).

Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links