Electrical Discharge Machining, EDM is one of the technologies used for surface
texturing such as the embedded micro-dimples on the metallic acetabular cup. During
the machining process, changes in the gap distance may lead to load changes from
open to short circuit. Limiting the load current under short circuit conditions and load
voltage under open circuit conditions is the requirement in this system. Power supply
is one of the elements that controls the process parameters which is related to improve
the machining condition as well as Material Removal Rate (MRR). A considerable
number of power supply design method were proposed for various EDM application.
This research proposed a Switch Mode Power Supply method implementing new
design of Flyback power supply which can stabilize the voltage during open circuit
condition as well as during discharge condition. Experimental studies were conducted
to verify the capability of Flyback power supply by machining eight micro-dimples in
lower position and twelve micro-dimples in upper position, both in circular
arrangement on metallic acetabular cup. Research conducted shows that the Flyback
power supply improve the consistency of MRR when compared to Linear power supply.
This may help to predict the machining time, thus improving the production of microdimples
in required time.
The side sensitive group runs (SSGR) chart is better than both the Shewhart and synthetic charts in detecting small and moderate process mean shifts. In practical circumstances, the process parameters are seldom known, so it is necessary to estimate them from in-control Phase-I samples. Research has discovered that a large number of in-control Phase-I samples are needed for the SSGR chart with estimated process parameters to behave similarly to a chart with known process parameters. The common metric to evaluate the performance of the control chart is average run length (ARL). An assumption for the computation of the ARL is that the shift size is assumed to be known. In reality however, the practitioners may not know the following shift size in advance. In light of this, the expected average run length (EARL) will be considered to measure the performance of the SSGR chart. Moreover, the standard deviation of the ARL (SDARL) will be studied, which is used to quantify the between-practitioner variability in the SSGR chart with estimated process parameters. This paper proposes the optimal design of the estimated process parameters SSGR chart based on the EARL criterion. The application of the optimal SSGR chart with estimated process parameters is demonstrated with actual data taken from a manufacturing company.
The existence of the gap between the expectation of culinary students and the realities of the job
market has led the students to face the obstacles to entering or continuing their career in the same
industry. As such, entrepreneurship is one of the best approaches in educating culinary students to
prepare for any possible after graduation. However, there are no guidelines for determining and
measuring the entrepreneurial level of culinary students. Therefore, this research aims to identify the
elements of entrepreneurship in culinary. The results of this research is a culinary entrepreneurial
framework. Side of this research is to build a measurement instrument of culinary entrepreneurship
level and to produce culinary entrepreneurship profiles for culinary students. This research uses
qualitative method in the first phase through document analysis and interviews with graduates and
culinary entrepreneurs. At the end of the study, it will acquire a culinary entrepreneurial framework
that is also used to produce an entrepreneurship measurement instrument in the second phase of
research.
Information Centric Network (ICN) is expected to be the favorable deployable future Internet paradigm. ICN intends to replace the current IP-based model with the name-based content-centric model, as it aims at providing better security, scalability, and content distribution. However, it is a challenging task to conceive how ICN can be linked with the other most emerging paradigm, i.e., Vehicular Ad hoc Network (VANET). In this article, we present an overview of the ICN-based VANET approach in line with its contributions and research challenges.In addition, the connectivity issues of vehicular ICN model is presented with some other emerging paradigms, such as Software Defined Network (SDN), Cloud, and Edge computing. Moreover, some ICN-based VANET research opportunities, in terms of security, mobility, routing, naming, caching, and fifth generation (5G) communications, are also covered at the end of the paper.
Rainfalls data have been broadly used in researches including in hydrological and meteorological areas. Two common ways in extracting observations from hourly rainfalls data are the window-based analysis (WBA) and storm-event analysis (SEA) approach. However, the differences in the qualitative and quantitative properties of both methods are still vaguely discussed. The aim of studying these dissimilarities is to understand the effects of each approach in modelling and analysis. The qualitative difference is due to the way the two analyses define the accumulated rainfalls for observations which are referred to as rainfall and storm depths, respectively. The repetitiveness of rainfall depths provide nested structure while the storm depths are considered independent. The quantitative comparisons include their statistical and scaling properties that are linked by the self-similarity concept from simple scaling characteristics. If self-similarity concept
holds, then the rainfall or storm depths follow simple scaling and the analysis would be simplified. The rainfall depths showed clearer simple scaling characteristics compared to the storm depths. Though the storm depths do not yield self-similarity for a large range of storm duration but the characteristics of simple scaling can be observed for a reduced range of the considered duration. In general, the context of the research and the region of the time interval and duration will be an important aspects to consider in choosing which method is best to use for analyzing the data.
There are two main reasons that motivate people to detect outliers; the first is the researchers' intention; see the example of Mr Haldum's cases in Barnett and Lewis. The second is the effect of outliers on analyses. This article does not differentiate between the various justifications for outlier detection. The aim was to advise the analyst about observations that are isolated from the other observations in the data set. In this article, we introduce the eigenstructure based angle for outlier detection. This method is simple and effective in dealing with masking and swamping problems. The method proposed is illustrated and compared with Mahalanobis distance by using several data sets.
Recently, there is strong interest on the subject of outlier problem in circular data. In this paper, we focus on detecting outliers in a circular regression model proposed by Down and Mardia. The basic properties of the model are available including the exact form of covariance matrix of the parameters. Hence, we intend to identify outliers in the model by looking at the effect of the outliers on the covariance matrix. The method resembles closely the COVRATIO statistic for the case of linear regression problem. The corresponding critical values and the performance of the outlier detection procedure are studied via simulations. For illustration, we apply the procedure on the wind data set.
Six varieties of Ficus deltoidea Jack (Moraceae) showed leaf morphological variations through quantitative measurement on different plant parts. There were significant differences among six varieties studied by plant parts. The varieties studied include var. deltoidea Corner, var. angustifolia (Miq.) Corner, var. trengganuensis Corner, var. bilobata Corner, var. intermedia Corner, and var. kunstleri (King) Corner. The upper, middle and lower plant parts showed morphological variations in terms of leaf length, leaf width, leaf area and petiole length. Qualitative parameters also showed trends in morphological variations in terms of leaf shape, leaf base, leaf apex and leaf attachment. However, some qualitative parameters were not the recommended parameters to differentiate among varieties. On the other hand, leaf heterophylly has occurred in F. deltoidea because foliage of the young plant was different from the mature plant. Leaf heterophylly was observed in leaf shape and leaf apex parameters, whereby leaves from the lower plant parts were different from the upper and middle parts. The heterophylly in leaf shape was detected in varieties angustifolia, bilobata, intermedia and trengganuensis, whilst six varieties of F. deltoidea showed leaf apex heterophylly
A printed compact monopole antenna based on a single negative (SNG) metamaterial is proposed for ultra-wideband (UWB) applications. A low-profile, key-shaped structure forms the radiating monopole and is loaded with metamaterial unit cells with negative permittivity and more than 1.5 GHz bandwidth of near-zero refractive index (NZRI) property. The antenna offers a wide bandwidth from 3.08 to 14.1 GHz and an average gain of 4.54 dBi, with a peak gain of 6.12 dBi; this is in contrast to the poor performance when metamaterial is not used. Moreover, the maximum obtained radiation efficiency is 97%. A reasonable agreement between simulation and experiments is realized, demonstrating that the proposed antenna can operate over a wide bandwidth with symmetric split-ring resonator (SSRR) metamaterial structures and compact size of 14.5 × 22 mm2 (0.148 λ0 × 0.226 λ0) with respect to the lowest operating frequency.
The problem of constructing such a continuous function is called data fitting. Many times, data given only at discrete points. With interpolation, we seek a function that allows us to approximate f(x) such that functional values between the original data set values may be determined. The process of finding such a polynomial is called interpolation and one of the most important approaches used are Lagrange interpolating formula. In this study, researcher determining the polynomial interpolation by using Lagrange interpolating formula. Then, a mathematical modelling was built by using MATLAB programming to determine the polynomial interpolation for a given points using the Lagrange method. The result of the study showed that the manual calculating and the MATLAB mathematical modelling will give the same answer for evaluated x and graph.
MAIN CONCLUSION: Crops For the Future (CFF), as an entity, has established a broad range of research activities to promote the improvement and adoption of currently underutilised crops. This paper summarises selected research activities at Crops For the Future (CFF) in pursuit of its mission 'to develop solutions for diversifying future agriculture using underutilised crops'. CFF is a research company focussed on the improvement of underutilised crops, so that they might be grown and consumed more widely with benefits to human food and nutritional security; its founding guarantors were the Government of Malaysia and the University of Nottingham. From its base in Malaysia, it engages in research around the world with a focus on species and system diversification. CFF has adopted a food system approach that adds value by delivering prototype food, feed and knowledge products. Bambara groundnut (Vigna subterranea) was adopted as an exemplar crop around which to develop CFF's food system approach with emphasis on the short-day photoperiod requirement for pod-filling and the hard-to-cook trait. Selective breeding has allowed the development of lines that are less susceptible to photoperiod but also provided a range of tools and approaches that are now being exploited in other crops such as winged bean (Psophocarpus tetragonolobus), amaranth (Amaranthus spp.), moringa (Moringa oleifera) and proso (Panicum miliaceum) and foxtail (Setaria italica) millets. CFF has developed and tested new food products and demonstrated that several crops can be used as feed for black soldier fly which can, in turn, be used to feed fish thereby reducing the need for fishmeal. Information about underutilised crops is widely dispersed; so, a major effort has been made to develop a knowledge base that can be interrogated and used to answer practical questions about potential exploitation of plant and nutritional characteristics. Future research will build on the success with Bambara groundnut and include topics such as urban agriculture, rural development and diversification, and the development of novel foods.
MXene based nanomaterial is an uprising two-dimensional material gaining tremendous scientific attentions due to its versatile properties for the applications in electronic devices, power generation, sensors, drug delivery, and biomedicine. However, the cytotoxic effects of MXene still remained a huge concern. Therefore, stringent analysis of biocompatibility of MXene is an essential requirement before introduction to human physiological system. Several in vitro and in vivo toxicological studies have been reported to investigate the interactions between MXenes with living organisms such as microbes, mammalian cells and animal models. The biological response and cytotoxicity reported were dependent on the physicochemical properties of MXene. The biocompatibility and cytotoxicity of MXene were dependent on size, dose, and surface coating. This review demystifies the in vitro and in vivo biocompatibility studies associated with MXene. Various methods proposed to mitigate the cytotoxicity of MXene for in vivo applications were revealed. The machine learning methods were developed to predict the cytotoxicity of experimentally synthesized MXene compounds. Finally, we also discussed the current research gaps of applying MXenes in biomedical interventions.