DESIGN, PATIENTS AND MEASUREMENTS: Patients with AI on twice-daily hydrocortisone, who had low or moderate risk and intended to fast, were recruited. Patients were converted to prednisolone 5 mg once daily taken at sahur (predawn) and Ramadan education given. Weight, sleep duration, biochemical parameters and quality of life measures (SF-36 questionnaire) were analysed at the end of Ramadan and compared against baseline.
RESULTS: Twenty patients (13 men) were recruited, with a mean age of 59.9 ± 15.0 years. All patients were on hydrocortisone 15 mg daily (in divided doses) as pre-Ramadan glucocorticoid replacement. Half had type 2 diabetes with low IDF-DAR risk. Eighty-five percent of patients completed the full 29 days of fasting with no complications. There was a significant reduction in weight (-1.1 ± 1.6 kg, p = .005), with no significant change in blood pressure or sleep duration. There was a significant increase in urea (0.80 ± 1.1 mmol/L, p = .005) and haematocrit, (0.011 ± 0.019 L/L, p = .019) and decrease in serum sodium (-1.6 ± 3.0 mmol/L, p = .028), with no change in serum creatinine or liver function. Quality of life measures were preserved in all domains with significant improvement in role limitation due to physical health (15.3 ± 21.6, p = .005) and bodily pain (8.8 ± 16.3, p = .031).
CONCLUSIONS: This study has demonstrated that converting patients with AI who are fasting for Ramadan from twice-daily hydrocortisone to prednisolone 5 mg daily at sahur was safe, with no major short-term adverse effects. Despite the higher equivalent glucocorticoid doses, patients experienced weight loss and no clinically significant change in blood pressure, sleep, biochemical parameters or quality of life. This study paves the way to trial even lower doses of prednisolone once daily in patients fasting for Ramadan with AI.
METHODS: A total of 20 healthy volunteers were challenged with 3 test meals, similar in fat content (~31% en) but varying in saturated SFA content and polyunsaturated/saturated fatty acid ratios (P/S). The 3 meals were lauric + myristic acid-rich (LM), P/S 0.19; palmitic acid-rich (POL), P/S 0.31; and stearic acid-rich (STE), P/S 0.22. Blood was sampled at fasted baseline and 2, 4, 5, 6, and 8 hours. Plasma lipids (triacylglycerol [TAG]) and lipoproteins (TC, LDL-C, high density lipoprotein-cholesterol [HDL-C]) were evaluated.
RESULTS: Varying SFA in the test meal significantly impacted postprandial TAG response (p < 0.05). Plasma TAG peaked at 5 hours for STE, 4 hours for POL, and 2 hours for LM test meals. Area-under-the-curve (AUC) for plasma TAG was increased significantly after STE treatment (STE > LM by 32.2%, p = 0.003; STE > POL by 27.9%, p = 0.023) but was not significantly different between POL and LM (POL > LM by 6.0%, p > 0.05). At 2 hours, plasma HDL-C increased significantly after the LM and POL test meals compared with STE (p < 0.05). In comparison to the STE test meal, HDL-C AUC was elevated 14.0% (p = 0.005) and 7.6% (p = 0.023) by the LM and POL test meals, respectively. The TC response was also increased significantly by LM compared with both POL and STE test meals (p < 0.05).
CONCLUSIONS: Chain length of saturates clearly mediated postmeal plasma TAG and HDL-C changes.
METHODS: All English-language medical literature published from inception till October 2014 which met the inclusion criteria were reviewed and analyzed.
RESULTS: A total of nine papers were included, reviewed and analyzed. The total sample size was 4276 patients. All studies used either of the two DPP4 inhibitors - Vildagliptin or Sitagliptin, vs sulphonylurea or meglitinides. Patients receiving DPP4 inhibitors were less likely to develop symptomatic hypoglycemia (risk ratio 0.46; 95% CI, 0.30-0.70), confirmed hypoglycemia (risk ratio 0.36; 95% CI, 0.21-0.64) and severe hypoglycemia (risk ratio 0.22; 95% CI, 0.10-0.53) compared with patients on sulphonylureas. There was no statistically significant difference in HbA1C changes comparing Vildagliptin and sulphonylurea.
CONCLUSION: DPP4 inhibitor is a safer alternative to sulphonylurea in Muslim patients with type 2 diabetes mellitus who fast during the month of Ramadan as it is associated with lower risk of symptomatic, confirmed and severe hypoglycemia, with efficacy comparable to sulphonylurea.
METHODS: Seventy-six obese subjects were randomly placed into two groups. The first group received three daily 120 mg dosages of orlistat for nine months (n=39), and the second group received a once daily 10 or 15 mg dosage of sibutramine for nine months (n=37). Baseline measurements for weight, body mass index (BMI), waist circumference (WC), body fat percentage (BF), visceral fat (VF), adiponectin, fasting plasma glucose (FPG), fasting insulin, pancreatic B cell secretory capacity (HOMA%B), insulin sensitivity (HOMA%S), insulin resistance (HOMA-IR) and serum high sensitivity C-reactive protein (hs-CRP) were performed and repeated during the sixth and ninth months of treatment.
RESULTS: Twenty-four subjects completed the trial in both groups. For both groups, weight, BMI, WC, BF, VF, HOMA-IR and hs-CRP were significantly lower at the end of the nine month intervention. However, there were no significant differences between the two groups for these parameters with nine months treatment. There was a significant decrease in FPG in orlistat group; while fasting insulin and HOMA%B reduced in sibutramine group. For both groups, there were also significant increases in adiponectin levels and HOMA%S at the end of the nine month intervention.
CONCLUSION: Nine months of treatment with orlistat and sibutramine not only reduced weight but also significantly improved BMI, WC, BF, VF, FPG, adiponectin, fasting insulin, HOMA%B, HOMA%S, HOMA-IR and hs-CRP. These improvements could prove useful in the reduction of metabolic and cardiovascular risks in obese subjects.
Methods: 53 women with GDM (30 managed with diet only (GDM-diet) and 23 treated with insulin (GDM-insulin)) and 43 pregnant women with normal glucose tolerance (NGDM) were studied, with GIP and GLP-1 levels measured at 24-28 weeks (E1), prior (E2) and after (E3) delivery, and postpuerperium (E4).
Results: Basal GIP was shown to be low in GDM groups compared to NGDM in E1, and in E4 for GDM-diet. GLP-1 was low in GDM groups during pregnancy and afterwards. At E1, serum GIP and GLP-1 were inversely associated with GDM and participants with lower levels of GIP (<0.23 ng/mL) and GLP-1 (<0.38 ng/mL) had a 6 (95% CI 2.5-14.5)- and 7.6 (95% CI 3.0-19.1)-fold higher risk of developing GDM compared with the higher level, respectively. In the postpuerperium, when there is a drop in β-cell function, participants with previous GDM (pGDM) presented lower GLP-1 (in both GDM subgroups) and lower GIP in GDM-diet subgroup compared to controls.
Conclusion: There is an independent, inverse association between fasting incretins and higher risk of GDM. Furthermore, lowered levels of these peptides may play an important role in the abnormality of glucose regulation following pregnancy.
PATIENTS AND METHODS: A total of 120 men, aged 40-70 years, with TD (serum total testosterone [TT] ≤ 12 nmol/L) were randomised to receive either i.m. TU (1000 mg) or placebo. In all, 58 and 56 men in the placebo and treatment arm, respectively, completed the study. Participants were seen six times in the 48-week period and the following data were collected: physical examination results, haemoglobin, haematocrit, TT, lipid profile, fasting blood glucose, sex hormone-binding globulin, liver function test, prostate- specific antigen (PSA) and adverse events.
RESULTS: The mean (sd) age of the participants was 53.4 (7.6) years. A significant increase in serum TT (P < 0.001), PSA (P = 0.010), haematocrit (P < 0.001), haemoglobin (P < 0.001) and total bilirubin (P = 0.001) were seen in the treatment arm over the 48-week period. Two men in the placebo arm and one man in the treatment arm developed myocardial infarction. Common adverse events observed in the treatment arm included itching/swelling/pain at the site of injection, flushing and acne. Overall, TU injections were well tolerated.
CONCLUSIONS: TU significantly increases serum testosterone in men with TD. PSA, haemoglobin and haematocrit were significantly elevated but were within clinically safe limits. There was no significant adverse reaction that led to the cessation of treatment.
OBJECTIVES: To compare techniques of blood glucose monitoring and their impact on maternal and infant outcomes among pregnant women with pre-existing diabetes.
SEARCH METHODS: We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (30 November 2016), searched reference lists of retrieved studies and contacted trial authors.
SELECTION CRITERIA: Randomised controlled trials (RCTs) and quasi-RCTs comparing techniques of blood glucose monitoring including SMBG, continuous glucose monitoring (CGM) or clinic monitoring among pregnant women with pre-existing diabetes mellitus (type 1 or type 2). Trials investigating timing and frequency of monitoring were also included. RCTs using a cluster-randomised design were eligible for inclusion but none were identified.
DATA COLLECTION AND ANALYSIS: Two review authors independently assessed study eligibility, extracted data and assessed the risk of bias of included studies. Data were checked for accuracy. The quality of the evidence was assessed using the GRADE approach.
MAIN RESULTS: This review update includes at total of 10 trials (538) women (468 women with type 1 diabetes and 70 women with type 2 diabetes). The trials took place in Europe and the USA. Five of the 10 included studies were at moderate risk of bias, four studies were at low to moderate risk of bias, and one study was at high risk of bias. The trials are too small to show differences in important outcomes such as macrosomia, preterm birth, miscarriage or death of baby. Almost all the reported GRADE outcomes were assessed as being very low-quality evidence. This was due to design limitations in the studies, wide confidence intervals, small sample sizes, and few events. In addition, there was high heterogeneity for some outcomes.Various methods of glucose monitoring were compared in the trials. Neither pooled analyses nor individual trial analyses showed any clear advantages of one monitoring technique over another for primary and secondary outcomes. Many important outcomes were not reported.1. Self-monitoring versus standard care (two studies, 43 women): there was no clear difference for caesarean section (risk ratio (RR) 0.78, 95% confidence interval (CI) 0.40 to 1.49; one study, 28 women) or glycaemic control (both very low-quality), and not enough evidence to assess perinatal mortality and neonatal mortality and morbidity composite. Hypertensive disorders of pregnancy, large-for-gestational age, neurosensory disability, and preterm birth were not reported in either study.2. Self-monitoring versus hospitalisation (one study, 100 women): there was no clear difference for hypertensive disorders of pregnancy (pre-eclampsia and hypertension) (RR 4.26, 95% CI 0.52 to 35.16; very low-quality: RR 0.43, 95% CI 0.08 to 2.22; very low-quality). There was no clear difference in caesarean section or preterm birth less than 37 weeks' gestation (both very low quality), and the sample size was too small to assess perinatal mortality (very low-quality). Large-for-gestational age, mortality or morbidity composite, neurosensory disability and preterm birth less than 34 weeks were not reported.3. Pre-prandial versus post-prandial glucose monitoring (one study, 61 women): there was no clear difference between groups for caesarean section (RR 1.45, 95% CI 0.92 to 2.28; very low-quality), large-for-gestational age (RR 1.16, 95% CI 0.73 to 1.85; very low-quality) or glycaemic control (very low-quality). The results for hypertensive disorders of pregnancy: pre-eclampsia and perinatal mortality are not meaningful because these outcomes were too rare to show differences in a small sample (all very low-quality). The study did not report the outcomes mortality or morbidity composite, neurosensory disability or preterm birth.4. Automated telemedicine monitoring versus conventional system (three studies, 84 women): there was no clear difference for caesarean section (RR 0.96, 95% CI 0.62 to 1.48; one study, 32 women; very low-quality), and mortality or morbidity composite in the one study that reported these outcomes. There were no clear differences for glycaemic control (very low-quality). No studies reported hypertensive disorders of pregnancy, large-for-gestational age, perinatal mortality (stillbirth and neonatal mortality), neurosensory disability or preterm birth.5.CGM versus intermittent monitoring (two studies, 225 women): there was no clear difference for pre-eclampsia (RR 1.37, 95% CI 0.52 to 3.59; low-quality), caesarean section (average RR 1.00, 95% CI 0.65 to 1.54; I² = 62%; very low-quality) and large-for-gestational age (average RR 0.89, 95% CI 0.41 to 1.92; I² = 82%; very low-quality). Glycaemic control indicated by mean maternal HbA1c was lower for women in the continuous monitoring group (mean difference (MD) -0.60 %, 95% CI -0.91 to -0.29; one study, 71 women; moderate-quality). There was not enough evidence to assess perinatal mortality and there were no clear differences for preterm birth less than 37 weeks' gestation (low-quality). Mortality or morbidity composite, neurosensory disability and preterm birth less than 34 weeks were not reported.6. Constant CGM versus intermittent CGM (one study, 25 women): there was no clear difference between groups for caesarean section (RR 0.77, 95% CI 0.33 to 1.79; very low-quality), glycaemic control (mean blood glucose in the 3rd trimester) (MD -0.14 mmol/L, 95% CI -2.00 to 1.72; very low-quality) or preterm birth less than 37 weeks' gestation (RR 1.08, 95% CI 0.08 to 15.46; very low-quality). Other primary (hypertensive disorders of pregnancy, large-for-gestational age, perinatal mortality (stillbirth and neonatal mortality), mortality or morbidity composite, and neurosensory disability) or GRADE outcomes (preterm birth less than 34 weeks' gestation) were not reported.
AUTHORS' CONCLUSIONS: This review found no evidence that any glucose monitoring technique is superior to any other technique among pregnant women with pre-existing type 1 or type 2 diabetes. The evidence base for the effectiveness of monitoring techniques is weak and additional evidence from large well-designed randomised trials is required to inform choices of glucose monitoring techniques.