Displaying publications 1 - 20 of 99 in total

Abstract:
Sort:
  1. Chang CT, Lim XJ, Chew CC, Rajan P, Chan HK, Abu Hassan MR, et al.
    Vaccine, 2022 Dec 12;40(52):7515-7519.
    PMID: 36371369 DOI: 10.1016/j.vaccine.2022.10.057
    The recent wave of COVID-19 cases has led to the potential need for booster doses. We surveyed 6,294 people and found that 87.6% reported willingness to take a booster dose, with vaccine efficacy rate being the most common reason cited to accept booster dose. Differences in acceptance rates were noted among those working in non-health related sectors, different ethnic groups as well as those who had taken viral vector vaccines.
    Matched MeSH terms: Viral Vaccines*
  2. Salvamani S, Tan HZ, Thang WJ, Ter HC, Wan MS, Gunasekaran B, et al.
    Br J Biomed Sci, 2020 Oct;77(4):168-184.
    PMID: 32942955 DOI: 10.1080/09674845.2020.1826136
    The COVID-19 disease is caused by the SARS-CoV-2 virus, which is highly infective within the human population. The virus is widely disseminated to almost every continent with over twenty-seven million infections and over ninety-thousand reported deaths attributed to COVID-19 disease. SARS-CoV-2 is a single stranded RNA virus, comprising three main viral proteins; membrane, spike and envelope. The clinical features of COVID-19 disease can be classified according to different degrees of severity, with some patients progressing to acute respiratory distress syndrome, which can be fatal. In addition, many infections are asymptomatic or only cause mild symptoms. As there is no specific treatment for COVID-19 there is considerable endeavour to raise a vaccine against SARS-CoV-2, in addition to engineering neutralizing antibody interventions. In the absence of an effective vaccine, movement controls of varying stringencies have been imposed. Whilst enforced lockdown measures have been effective, they may be less effective against the current strain of SARS-CoV-2, the G614 clade. Conversely, other mutations of the virus, such as the Δ382 variant could reduce the clinical relevance of infection. The front runners in the race to develop an effective vaccine focus on the SARS-Co-V-2 Spike protein. However, vaccines that produce a T-cell response to a wider range of SARS-Co-V-2 viral proteins, may be more effective. Population based studies that determine the level of innate immunity to SARS-CoV-2, from prior exposure to the virus or to other coronaviruses, will have important implications for government imposed movement control and the strategic delivery of vaccination programmes.
    Matched MeSH terms: Viral Vaccines/therapeutic use
  3. Mishra G, Prajapat V, Nayak D
    Immunology, 2024 Feb;171(2):155-169.
    PMID: 37712243 DOI: 10.1111/imm.13695
    Nipah virus (NiV) causes severe encephalitis in humans. Three NiV strains NiV-Malaysia (NiVM ), NiV Bangladesh (NiVB ), and NiV India (NiVI reported in 2019) have been circulating in South-Asian nations. Sporadic outbreak observed in South-East Asian countries but human to human transmission raises the concern about its pandemic potential. The presence of the viral genome in reservoir bats has further confirmed that NiV has spread to the African and Australian continents. NiV research activities have gained momentum to achieve specific preparedness goals to meet any future emergency-as a result, several potential vaccine candidates have been developed and tested in a variety of animal models. Some of these candidate vaccines have entered further clinical trials. Research activities related to the discovery of therapeutic monoclonal antibodies (mAbs) have resulted in the identification of a handful of candidates capable of neutralizing the virion. However, progress in discovering potential antiviral drugs has been limited. Thus, considering NiV's pandemic potential, it is crucial to fast-track ongoing projects related to vaccine clinical trials, anti-NiV therapeutics. Here, we discuss the current progress in NiV-vaccine research and therapeutic options, including mAbs and antiviral medications.
    Matched MeSH terms: Viral Vaccines*
  4. Hing NYL, Woon YL, Lee YK, Kim HJ, Lothfi NM, Wong E, et al.
    BMJ Glob Health, 2022 Jul;7(7).
    PMID: 35906015 DOI: 10.1136/bmjgh-2022-009250
    INTRODUCTION: Vaccine safety is a primary concern among vaccine-hesitant individuals. We examined how seven persuasive messages with different frames, all focusing on vaccine safety, influenced Malaysians to accept the COVID-19 vaccine, and recommend it to individuals with different health and age profiles; that is, healthy adults, the elderly, and people with pre-existing health conditions.

    METHODS: A randomised controlled experiment was conducted from 29 April to 7 June 2021, which coincided with the early phases of the national vaccination programme when vaccine uptake data were largely unavailable. 5784 Malaysians were randomly allocated into 14 experimental arms and exposed to one or two messages that promoted COVID-19 vaccination. Interventional messages were applied alone or in combination and compared against a control message. Outcome measures were assessed as intent to both take the vaccine and recommend it to healthy adults, the elderly, and people with pre-existing health conditions, before and after message exposure. Changes in intent were modelled and we estimated the average marginal effects based on changes in the predicted probability of responding with a positive intent for each of the four outcomes.

    RESULTS: We found that persuasive communication via several of the experimented messages improved recommendation intentions to people with pre-existing health conditions, with improvements ranging from 4 to 8 percentage points. In contrast, none of the messages neither significantly improved vaccination intentions, nor recommendations to healthy adults and the elderly. Instead, we found evidence suggestive of backfiring among certain outcomes with messages using negative attribute frames, risky choice frames, and priming descriptive norms.

    CONCLUSION: Message frames that briefly communicate verbatim facts and stimulate rational thinking regarding vaccine safety may be ineffective at positively influencing vaccine-hesitant individuals. Messages intended to promote recommendations of novel health interventions to people with pre-existing health conditions should incorporate safety dimensions.

    TRIAL REGISTRATION NUMBER: NCT05244356.

    Matched MeSH terms: Viral Vaccines*
  5. Khan AM, Hu Y, Miotto O, Thevasagayam NM, Sukumaran R, Abd Raman HS, et al.
    BMC Med Genomics, 2017 12 21;10(Suppl 4):78.
    PMID: 29322922 DOI: 10.1186/s12920-017-0301-2
    BACKGROUND: Viral vaccine target discovery requires understanding the diversity of both the virus and the human immune system. The readily available and rapidly growing pool of viral sequence data in the public domain enable the identification and characterization of immune targets relevant to adaptive immunity. A systematic bioinformatics approach is necessary to facilitate the analysis of such large datasets for selection of potential candidate vaccine targets.

    RESULTS: This work describes a computational methodology to achieve this analysis, with data of dengue, West Nile, hepatitis A, HIV-1, and influenza A viruses as examples. Our methodology has been implemented as an analytical pipeline that brings significant advancement to the field of reverse vaccinology, enabling systematic screening of known sequence data in nature for identification of vaccine targets. This includes key steps (i) comprehensive and extensive collection of sequence data of viral proteomes (the virome), (ii) data cleaning, (iii) large-scale sequence alignments, (iv) peptide entropy analysis, (v) intra- and inter-species variation analysis of conserved sequences, including human homology analysis, and (vi) functional and immunological relevance analysis.

    CONCLUSION: These steps are combined into the pipeline ensuring that a more refined process, as compared to a simple evolutionary conservation analysis, will facilitate a better selection of vaccine targets and their prioritization for subsequent experimental validation.

    Matched MeSH terms: Viral Vaccines/genetics; Viral Vaccines/immunology; Viral Vaccines/chemistry*
  6. Yoneda M
    Nippon Rinsho, 2016 12;74(12):1973-1978.
    PMID: 30550652
    Nipah and Hendra virus were first identified in mid 1990s in Australia and Malaysia, caus- ing epidemics with high mortality rate in affected animals and humans. Since their first emer- gence, they continued to re-emerge in Australia and South East Asia almost every year. Nipah and Hendra virus were classified in the new genus Henipavirus because of their un- common features amongst Paramyxoviridae. Henipaviruses are zoonotic paramyxoviruses with a broad tropism, and cause severe acute respiratory disease and encephalitis. Their high virulence and wide host range make them to be given Biosecurity Level 4 status. This review summarizes details of Henipavirus emergence, reservoir hosts and pathology, and introduce recent progress in vaccines and antivirals.
    Matched MeSH terms: Viral Vaccines/therapeutic use
  7. Lu M, Yao Y, Liu H, Zhang X, Li X, Liu Y, et al.
    JCI Insight, 2023 Dec 08;8(23).
    PMID: 37917215 DOI: 10.1172/jci.insight.175461
    Nipah virus (NiV), a bat-borne paramyxovirus, results in neurological and respiratory diseases with high mortality in humans and animals. Developing vaccines is crucial for fighting these diseases. Previously, only a few studies focused on the fusion (F) protein alone as the immunogen. Numerous NiV strains have been identified, including 2 representative strains from Malaysia (NiV-M) and Bangladesh (NiV-B), which differ significantly from each other. In this study, an F protein sequence with the potential to prevent different NiV strain infections was designed by bioinformatics analysis after an in-depth study of NiV sequences in GenBank. Then, a chimpanzee adenoviral vector vaccine and a DNA vaccine were developed. High levels of immune responses were detected after AdC68-F, pVAX1-F, and a prime-boost strategy (pVAX1-F/AdC68-F) in mice. After high titers of humoral responses were induced, the hamsters were challenged by the lethal NiV-M and NiV-B strains separately. The vaccinated hamsters did not show any clinical signs and survived 21 days after infection with either strain of NiV, and no virus was detected in different tissues. These results indicate that the vaccines provided complete protection against representative strains of NiV infection and have the potential to be developed as a broad-spectrum vaccine for human use.
    Matched MeSH terms: Viral Vaccines*
  8. Svetlova J, Gustin D, Manuvera V, Shirokov D, Shokina V, Prusakov K, et al.
    Int J Mol Sci, 2022 Oct 30;23(21).
    PMID: 36362010 DOI: 10.3390/ijms232113220
    Mutations in surface proteins enable emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to escape a substantial fraction of neutralizing antibodies and may thus weaken vaccine-driven immunity. To compare available vaccines and justify revaccination, rapid evaluation of antibody (Ab) responses to currently circulating SARS-CoV-2 variants of interest (VOI) and concern (VOC) is needed. Here, we developed a multiplex protein microarray-based system for rapid profiling of anti-SARS-CoV-2 Ab levels in human sera. The microarray system was validated using sera samples from SARS-CoV-2-free donors and those diagnosed with COVID-19 based on PCR and enzyme immunoassays. Microarray-based profiling of vaccinated donors revealed a substantial difference in anti-VOC Ab levels elicited by the replication-deficient adenovirus vector-base (Sputnik V) and whole-virion (CoviVac Russia COVID-19) vaccines. Whole-virion vaccine-induced Abs showed minor but statistically significant cross-reactivity with the human blood coagulation factor 1 (fibrinogen) and thrombin. However, their effects on blood clotting were negligible, according to thrombin time tests, providing evidence against the concept of pronounced cross-reactivity-related side effects of the vaccine. Importantly, all samples were collected in the pre-Omicron period but showed noticeable responses to the receptor-binding domain (RBD) of the Omicron spike protein. Thus, using the new express Ab-profiling system, we confirmed the inter-variant cross-reactivity of the anti-SARS-CoV-2 Abs and demonstrated the relative potency of the vaccines against new VOCs.
    Matched MeSH terms: Viral Vaccines/genetics; Viral Vaccines/pharmacology
  9. Chen-Fei L, Chou-Min C, Jiun-Yan L
    Fish Shellfish Immunol, 2020 Sep;104:431-438.
    PMID: 32580003 DOI: 10.1016/j.fsi.2020.06.039
    The giant freshwater prawn/giant river prawn, Macrobrachium rosenbergii is one of the high market value crustaceans cultured worldwide. The intensified aquaculture of the species has led to the outbreak of infectious diseases, prominently, the white tail disease (WTD). It is caused by the infection of Macrobrachium rosenbergii nodavirus (MrNV), which was classified in the family of Nodaviridae. To-date, there are no effective prophylactic and therapeutic agents available against MrNV infection. Vaccination is known to be the most effective prophylactic agent in disease prevention. However, vaccine development against virus infection in crustaceans is equivocal. The feasibility of vaccination in conferring immune protection in crustaceans against infectious diseases is disputable. The argument lies in the fact that crustaceans do not possess adaptive immunity, which is the main immune component that functions to establish immunological memory upon vaccination. Nevertheless, an increasing number of literatures has been documented, which concerns the development of vaccines against infectious diseases in crustaceans. The current review deliberates different approaches in vaccine development against MrNV, which were documented in the past years. It is noteworthy that the live-attenuated MrNV vaccine has not been experimented by far. Thus, the potential of live-attenuated MrNV vaccine in conferring long-term immune protection through the establishment of innate immune memory is currently being discussed.
    Matched MeSH terms: Viral Vaccines/pharmacology*
  10. Cheong MWL, Allotey P, Reidpath DD
    Asia Pac J Public Health, 2020 07 25;32(6-7):379-380.
    PMID: 32715721 DOI: 10.1177/1010539520944726
    Matched MeSH terms: Viral Vaccines*
  11. Yong CY, Liew WPP, Ong HK, Poh CL
    Biotechnol Prog, 2022 Nov;38(6):e3292.
    PMID: 35932092 DOI: 10.1002/btpr.3292
    Severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are the most impactful coronaviruses in human history, especially the latter, which brings revolutionary changes to human vaccinology. Due to its high infectivity, the virus spreads rapidly throughout the world and was declared a pandemic in March 2020. A vaccine would normally take more than 10 years to be developed. As such, there is no vaccine available for SARS-CoV and MERS-CoV. Currently, 10 vaccines have been approved for emergency use by World Health Organization (WHO) against SARS-CoV-2. Virus-like particle (VLP)s are nanoparticles resembling the native virus but devoid of the viral genome. Due to their self-adjuvanting properties, VLPs have been explored extensively for vaccine development. However, none of the approved vaccines against SARS-CoV-2 was based on VLP and only 4% of the vaccine candidates in clinical trials were based on VLPs. In the current review, we focused on discussing the major advances in the development of VLP-based vaccine candidates against the SARS-CoV, MERS-CoV, and SARS-CoV-2, including those in clinical and pre-clinical studies, to give a comprehensive overview of the VLP-based vaccines against the coronaviruses.
    Matched MeSH terms: Viral Vaccines*
  12. Al-Hatamleh MAI, Hatmal MM, Alshaer W, Rahman ENSEA, Mohd-Zahid MH, Alhaj-Qasem DM, et al.
    Eur J Pharmacol, 2021 Apr 05;896:173930.
    PMID: 33545157 DOI: 10.1016/j.ejphar.2021.173930
    The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which emerged in December 2019 and caused the coronavirus disease 2019 (COVID-19) pandemic, took the world by surprise with an unprecedented public health emergency. Since this pandemic began, extraordinary efforts have been made by scientists to understand the pathogenesis of COVID-19, and to fight the infection by providing various preventive, diagnostic and treatment opportunities based on either novel hypotheses or past experiences. Despite all the achievements, COVID-19 continues to be an accelerating health threat with no specifically approved vaccine or therapy. This review highlights the recent advances in COVID-19 infection, with a particular emphasis on nanomedicine applications that can help in the development of effective vaccines or therapeutics against COVID-19. A novel future perspective has been proposed in this review based on utilizing polymersome nano-objects for effectively suppressing the cytokine storm, which may reduce the severity of COVID-19 infection.
    Matched MeSH terms: Viral Vaccines/pharmacology*
  13. Yee PTI, Laa Poh C
    Virology, 2017 06;506:121-129.
    PMID: 28384566 DOI: 10.1016/j.virol.2017.03.017
    Enterovirus-A71 (EV-A71) is an etiological agent of the hand, foot and mouth disease (HFMD). EV-A71 infection produces high fever and ulcers in children. Some EV-A71 strains produce severe infections leading to pulmonary edema and death. Although the protective efficacy of the inactivated vaccine (IV) was ≥90% against mild HFMD, there was approximately 80% protection against severe HFMD. The monovalent EV-A71 IV elicits humoral immunity but lacks long-term immunogenicity. Spontaneous mutations of the EV-A71 genome could lead to antigenicity changes and the virus may not be neutralized by antibodies elicited by the IV. A better alternative would be the live attenuated vaccine (LAV) that elicits cellular and humoral immunity. The LAV induces excellent antigenicity and chances of reversion is reduced by presence of multiple mutations which could reduce pathogenicity. Besides CV-A16, outbreaks have been caused by CV-A6 and CV-A10, hence the development of bivalent and trivalent vaccines is required.
    Matched MeSH terms: Viral Vaccines/administration & dosage; Viral Vaccines/genetics; Viral Vaccines/immunology*
  14. Tan DS
    Med J Malaya, 1965 Sep;20(1):19-28.
    PMID: 4221407
    Matched MeSH terms: Viral Vaccines*
  15. Cheong HC, Cheok YY, Chan YT, Sulaiman S, Looi CY, Alshanon AF, et al.
    Viral Immunol, 2022 Nov;35(9):586-596.
    PMID: 36301533 DOI: 10.1089/vim.2022.0082
    Infection caused by the Zika virus (ZIKV) can lead to serious neurological complications such as microcephaly in neonates. At present, no approved ZIKV vaccine is available, but few vaccine candidates are undergoing clinical trial. One major challenge faced is antibody-dependent enhancement (ADE) reaction that may provoke severe outcome in subsequent infection by ZIKV or other flaviviruses. Thus, more efforts should be dedicated to understanding ADE in designing a safe and effective vaccine to minimize the consequence of the potentially fatal infection's complications and to tackle potential ZIKV reemergence. This review discusses different types of ZIKV vaccine candidates that are currently underway in various stages of preclinical and clinical evaluations.
    Matched MeSH terms: Viral Vaccines*
  16. Yee PT, Poh CL
    Viruses, 2015 Dec 30;8(1).
    PMID: 26729152 DOI: 10.3390/v8010001
    The hand, foot and mouth disease is caused by a group of Enteroviruses such as Enterovirus 71 (EV-A71) and Coxsackievirus CV-A5, CV-A8, and CV-A16. Mild symptoms of EV-A71 infection in children range from high fever, vomiting, rashes and ulcers in mouth but can produce more severe symptoms such as brainstem and cerebellar encephalitis, leading up to cardiopulmonary failure and death. The lack of vaccines and antiviral drugs against EV-A71 highlights the urgency of developing preventive and treatment agents against EV-A71 to prevent further fatalities. Research groups have developed experimental inactivated vaccines, recombinant Viral Protein 1 (VP1) vaccine and virus-like particles (VLPs). The inactivated EV-A71 vaccine is considered the safest viral vaccine, as there will be no reversion to the infectious wild type strain. The recombinant VP1 vaccine is a cost-effective immunogen, while VLPs contain an arrangement of epitopes that can elicit neutralizing antibodies against the virus. As each type of vaccine has its advantages and disadvantages, increased studies are required in the development of such vaccines, whereby high efficacy, long-lasting immunity, minimal risk to those vaccinated, safe and easy production, low cost, dispensing the need for refrigeration and convenient delivery are the major goals in their design.
    Matched MeSH terms: Viral Vaccines/genetics; Viral Vaccines/immunology*
  17. Monath TP, Seligman SJ, Robertson JS, Guy B, Hayes EB, Condit RC, et al.
    Vaccine, 2015 Jan 01;33(1):62-72.
    PMID: 25446819 DOI: 10.1016/j.vaccine.2014.10.004
    The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called "chimeric virus vaccines"). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for marketing (to date in Australia, Thailand, Malaysia, and the Philippines) is a vaccine against the flavivirus, Japanese encephalitis (JE), which employs a licensed vaccine (yellow fever 17D) as a vector. In this vaccine, two envelope proteins (prM-E) of YF 17D virus were exchanged for the corresponding genes of JE virus, with additional attenuating mutations incorporated into the JE gene inserts. Similar vaccines have been constructed by inserting prM-E genes of dengue and West Nile into YF 17D virus and are in late stage clinical studies. The dengue vaccine is, however, more complex in that it requires a mixture of four live vectors each expressing one of the four dengue serotypes. This vaccine has been evaluated in multiple clinical trials. No significant safety concerns have been found. The Phase 3 trials met their endpoints in terms of overall reduction of confirmed dengue fever, and, most importantly a significant reduction in severe dengue and hospitalization due to dengue. However, based on results that have been published so far, efficacy in preventing serotype 2 infection is less than that for the other three serotypes. In the development of these chimeric vaccines, an important series of comparative studies of safety and efficacy were made using the parental YF 17D vaccine virus as a benchmark. In this paper, we use a standardized template describing the key characteristics of the novel flavivirus vaccine vectors, in comparison to the parental YF 17D vaccine. The template facilitates scientific discourse among key stakeholders by increasing the transparency and comparability of information. The Brighton Collaboration V3SWG template may also be useful as a guide to the evaluation of other recombinant viral vector vaccines.
    Matched MeSH terms: Viral Vaccines/adverse effects*; Viral Vaccines/genetics*
  18. Ch'ng WC, Stanbridge EJ, Wong KT, Ong KC, Yusoff K, Shafee N
    Virol J, 2012;9:155.
    PMID: 22877087 DOI: 10.1186/1743-422X-9-155
    Enterovirus 71 (EV71) causes severe neurological diseases resulting in high mortality in young children worldwide. Development of an effective vaccine against EV71 infection is hampered by the lack of appropriate animal models for efficacy testing of candidate vaccines. Previously, we have successfully tested the immunogenicity and protectiveness of a candidate EV71 vaccine, containing recombinant Newcastle disease virus capsids that display an EV71 VP1 fragment (NPt-VP11-100) protein, in a mouse model of EV71 infection. A drawback of this system is its limited window of EV71 susceptibility period, 2 weeks after birth, leading to restricted options in the evaluation of optimal dosing regimens. To address this issue, we have assessed the NPt-VP11-100 candidate vaccine in a hamster system, which offers a 4-week susceptibility period to EV71 infection. Results obtained showed that the NPt-VP11-100 candidate vaccine stimulated excellent humoral immune response in the hamsters. Despite the high level of antibody production, they failed to neutralize EV71 viruses or protect vaccinated hamsters in viral challenge studies. Nevertheless, these findings have contributed towards a better understanding of the NPt-VP11-100 recombinant protein as a candidate vaccine in an alternative animal model system.
    Matched MeSH terms: Viral Vaccines/administration & dosage; Viral Vaccines/immunology*
  19. Wong SK, Tan WS, Omar AR, Tan CS, Yusoff K
    Acta Virol., 2009;53(1):35-41.
    PMID: 19301949
    Hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) plays a vital role in the viral infectivity, host immunity, and disease diagnosis. A portion of the HN gene encoding the ectodomain (nt 142-1739) was cloned and expressed in Escherichia coli yielding an insoluble HN protein and a soluble NusA-HN protein containing N-utilization substance A (NusA) fusion component. Both recombinant proteins were purified and used for immunization of chickens. The recombinant HN protein induced higher antibody titers as compared to the recombinant NusA-HN protein. These antibodies were able to react in immunoblot analysis with the corresponding recombinant proteins as well as with the HN protein of NDV.
    Matched MeSH terms: Viral Vaccines/genetics; Viral Vaccines/immunology*
  20. Ezeasor CK, Emikpe BO, Shoyinka SV, Sabri MY
    J Immunoassay Immunochem, 2021 Jul 04;42(4):424-443.
    PMID: 33724901 DOI: 10.1080/15321819.2021.1895216
    This study reports the influence of peste des petits ruminants (PPR) vaccination on the clinico-pathological outcomes of PPR in the face of an outbreak. Twenty-two West African dwarf goats procured for a different study started showing early signs of PPR during acclimatization. In response, PPR vaccine was administered either intranasally with phytogenic mucoadhesive gum (Group A; n = 6) or without gum (Group B; n = 6); subcutaneously (Group C; n = 6) or not vaccinated (Group D; n = 4) and studied for 21 days. The clinical scores, hematology, serology and pathology scores were evaluated. Clinical signs of PPR were present in all groups, presenting a percentage mortality of 33%; 33%; 64% and 100% for Groups A, B, C, and D, respectively. Polycythemia and mild leukopenia were observed in all groups, and all animals were seropositive by day 7 post-vaccination. The lung consolidation scores were low in Groups A and B, compared to Group C. Histopathological lesions consistent with PPR was observed in the lymphoid organs, gastrointestinal tract, and lungs with the presence of PPR antigen as detected by immunohistochemistry. The findings suggest that intranasal vaccination with or without mucoadhesive gum may influence the outcome of PPR infection more than the subcutaneous route in the face of an outbreak.
    Matched MeSH terms: Viral Vaccines/administration & dosage; Viral Vaccines/immunology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links