Displaying all 10 publications

Abstract:
Sort:
  1. Aljumaili OA, Bello MB, Yeap SK, Omar AR, Ideris A
    Onderstepoort J Vet Res, 2020 Sep 28;87(1):e1-e7.
    PMID: 33054260 DOI: 10.4102/ojvr.v87i1.1865
    Despite the availability of Newcastle disease (ND) vaccines for more than six decades, disease outbreaks continue to occur with huge economic consequences to the global poultry industry. The aim of this study is to develop a safe and effective inactivated vaccine based on a recently isolated Newcastle disease virus (NDV) strain IBS025/13 and evaluate its protective efficacy in chicken following challenge with a highly virulent genotype VII isolate. Firstly, high titre of IBS025/13 was exposed to various concentrations of binary ethylenimine (BEI) to determine the optimal conditions for complete inactivation of the virus. The inactivated virus was then prepared in form of a stable water-in-oil emulsion of black seed oil (BSO) or Freund's incomplete adjuvant (FIA) and used as vaccines in specific pathogen-free chicken. Efficacy of various vaccine preparations was also evaluated based on the ability of the vaccine to protect against clinical disease, mortality and virus shedding following challenge with highly virulent genotype\VII NDV isolate. The results indicate that exposure of NDV IBS025/13 to 10 mM of BEI for 21 h at 37 °C could completely inactivate the virus without tempering with the structural integrity of the viral hemagglutin-neuraminidase protein. More so, the inactivated vaccines adjuvanted with either BSO- or FIA-induced high hemagglutination inhibition antibody titre that protected the vaccinated birds against clinical disease and in some cases virus shedding, especially when used together with live attenuated vaccines. Thus, genotype VII-based NDV-inactivated vaccines formulated in BSO could substantially improve poultry disease control particularly when combined with live attenuated vaccines.
    Matched MeSH terms: Vaccines, Attenuated/administration & dosage
  2. Ernawati R, Ibrahim AL
    Vet Rec, 1984 Oct 06;115(14):352-4.
    PMID: 6495601
    An experimental oil emulsion Newcastle disease vaccine was evaluated for its efficacy in broiler chickens. A group of chickens vaccinated at one day old with a live lentogenic Newcastle disease vaccine and subsequently revaccinated at three and eight weeks old with the experimental oil emulsion vaccine showed satisfactory haemagglutination inhibition antibody response which persisted for 18 weeks. Between 90 and 100 per cent of the vaccinated chickens were protected when challenged with the velogenic viscerotropic Newcastle disease virus. Although the vaccinated chickens were protected against clinical disease, virus could be isolated from a number of birds. By day 10 to 12 after challenge all the chickens were free from Newcastle disease infection.
    Matched MeSH terms: Vaccines, Attenuated/administration & dosage
  3. Rafidah O, Zamri-Saad M, Shahirudin S, Nasip E
    Vet Rec, 2012 Aug 18;171(7):175.
    PMID: 22815208 DOI: 10.1136/vr.100403
    The efficacy of an intranasal haemorrhagic septicaemia vaccine containing live gdhA derivative Pasteurella multocida B:2 was tested in buffaloes in Sabah. Sixty buffaloes, kept grazing in the field with minimal human intervention were devided into three groups of 20 buffaloes per group. Buffaloes of group 1 were exposed intranasal to 5 ml vaccine containing 10(6) CFU/ml of live gdhA derivative P multocida B:2. Buffaloes of group 2 were not exposed to the vaccine but exposed to PBS and were allowed to commingle and graze in the same field as the buffaloes of group 1 while buffaloes of group 3 were similarly exposed to PBS and were grazing separately. Booster was on group 1, two weeks later. Twelve months after the first vaccination, three buffaloes from each group were brought into the experimental house and challenged subcutaneously with 10(9) CFU/ml of live wild-type P multocida B:2. All challenged buffaloes of groups 1 and 2 survived with only mild, transient signs while all control unvaccinated buffaloes developed severe signs of haemorrhagic septicaemia and were euthanased between 28 hours and 38 hours postchallenge with signs and lesions typical of haemorrhagic septicaemia. These data showed that the gdhA mutant strain, given intranasally as two doses two weeks apart, successfully induced systemic immunity in exposed buffaloes and also led to spread of vaccine strain to the in-contact animals, where it acted as an effective live vaccine to protect both exposed buffaloes and in-contact buffaloes against challenge with the virulent parent strain.
    Matched MeSH terms: Vaccines, Attenuated/administration & dosage
  4. Ismail MI, Tan SW, Hair-Bejo M, Omar AR
    J Vet Sci, 2020 Nov;21(6):e76.
    PMID: 33263227 DOI: 10.4142/jvs.2020.21.e76
    BACKGROUND: The predominant infectious bronchitis virus (IBV) strains detected in chickens in Malaysia are the Malaysian variant (MV) and QX-like, which are associated with respiratory distress, nephropathy, and high mortality. On the other hand, the antigenic relatedness and efficacy of IBV vaccines against these 2 field IBV strains are not well characterized.

    OBJECTIVES: This study aimed to determine the antigen relatedness and efficacy of different IB vaccine strains against a challenge with MV and QX-like strains.

    METHODS: The antigen relatedness and the ability of different IB vaccine strains in conferring protection against MV and QX-like were assessed based on the clinical signs, macroscopic lesions, and ciliary activity.

    RESULTS: The MV strain IBS037A/2014 showed minor antigenic subtype differences with the vaccine virus Mass H120 and 4/91 strains but showed major antigenic subtype differences with the K2 strain. The Malaysian QX-like strain IBS130/2015 showed major antigenic subtype differences with the MV strain IBS037A/2014 and the vaccine strains except for K2. Chickens vaccinated once with Mass (H120) or with non-Mass (4/91 and K2) developed antibody responses with the highest antibody titer detected in the groups vaccinated with H120 and 4/91. The mean ciliary activities of the vaccinated chickens were between 56 to 59% and 48 to 52% in chickens challenged with IBS037A/2014 and IBS130/2015, respectively. The vaccinated and challenged birds showed mild to severe lesions in the lungs and kidneys.

    CONCLUSIONS: Despite the minor antigenic subtype differences, a single inoculation with Mass or non-Mass vaccines could not protect against the MV IBS037A/2014 and QX-like IBS130/2015.

    Matched MeSH terms: Vaccines, Attenuated/administration & dosage*
  5. DeBuysscher BL, Scott D, Marzi A, Prescott J, Feldmann H
    Vaccine, 2014 May 07;32(22):2637-44.
    PMID: 24631094 DOI: 10.1016/j.vaccine.2014.02.087
    BACKGROUND: Nipah virus (NiV), a zoonotic pathogen causing severe respiratory illness and encephalitis in humans, emerged in Malaysia in 1998 with subsequent outbreaks on an almost annual basis since 2001 in parts of the Indian subcontinent. The high case fatality rate, human-to-human transmission, wide-ranging reservoir distribution and lack of licensed intervention options are making NiV a serious regional and potential global public health problem. The objective of this study was to develop a fast-acting, single-dose NiV vaccine that could be implemented in a ring vaccination approach during outbreaks.

    METHODS: In this study we have designed new live-attenuated vaccine vectors based on recombinant vesicular stomatitis viruses (rVSV) expressing NiV glycoproteins (G or F) or nucleoprotein (N) and evaluated their protective efficacy in Syrian hamsters, an established NiV animal disease model. We further characterized the humoral immune response to vaccination in hamsters using ELISA and neutralization assays and performed serum transfer studies.

    RESULTS: Vaccination of Syrian hamsters with a single dose of the rVSV vaccine vectors resulted in strong humoral immune responses with neutralizing activities found only in those animals vaccinated with rVSV expressing NiV G or F proteins. Vaccinated animals with neutralizing antibody responses were completely protected from lethal NiV disease, whereas animals vaccinated with rVSV expressing NiV N showed only partial protection. Protection of NiV G or F vaccinated animals was conferred by antibodies, most likely the neutralizing fraction, as demonstrated by serum transfer studies. Protection of N-vaccinated hamsters was not antibody-dependent indicating a role of adaptive cellular responses for protection.

    CONCLUSIONS: The rVSV vectors expressing Nipah virus G or F are prime candidates for new 'emergency vaccines' to be utilized for NiV outbreak management.

    Matched MeSH terms: Vaccines, Attenuated/administration & dosage
  6. Lum LC, Borja-Tabora CF, Breiman RF, Vesikari T, Sablan BP, Chay OM, et al.
    Vaccine, 2010 Feb 10;28(6):1566-74.
    PMID: 20003918 DOI: 10.1016/j.vaccine.2009.11.054
    Children aged 11 to <24 months received 2 intranasal doses of live attenuated influenza vaccine (LAIV) or placebo, 35+/-7 days apart. Dose 1 was administered concomitantly with a combined measles, mumps, and rubella vaccine (Priorix). Seroresponses to measles and mumps were similar between groups. Compared with placebo, response rates to rubella in LAIV+Priorix recipients were statistically lower at a 15 IU/mL threshold (83.9% vs 78.0%) and the prespecified noninferiority criteria were not met. In a post hoc analysis using an alternate widely accepted threshold of 10 IU/mL, the noninferiority criteria were met (93.4% vs 89.8%). Concomitant administration with Priorix did not affect the overall influenza protection rate of LAIV (78.4% and 63.8% against antigenically similar influenza strains and any strain, respectively).
    Matched MeSH terms: Vaccines, Attenuated/administration & dosage
  7. Murugaiah C, Nik Mohd Noor NZ, Al-Talib H, Mustafa S, Manickam R, Pattabhiraman L
    Microb Pathog, 2020 Mar;140:103964.
    PMID: 31904450 DOI: 10.1016/j.micpath.2020.103964
    In our previous study, complete protection was observed in rabbit immunized with 1 × 1010 CFU of live attenuated VCUSM21P vaccine against challenge with 1 × 109 CFU Vibrio cholerae O139. In the present study, we investigated whether the vaccines can effectively protect immunized animals from any pathologic changes using histological, immunohistochemical and ultrastructural techniques. Severe pathology is evident in wild type injected ileum in non-immunized, showing extensive villous destruction, edema, necrosis and inflammation with infiltration of large numbers of inflammatory cells, extensive damage to the villi and microvilli with pore formation. Histology of ileum injected with wild type in immunized rabbit shows no significant pathological changes except for a few inflammatory cells in lamina propria with mild edema in mucosa and submucosa. immunohistochemical staining revealed O139 antigens of wild type are seen in the lamina propria of edematous villi, muscularis mucosa and submucosa with weak presence in the muscle coat in non-immunized rabbit after challenged with wild type in non-immunized rabbits, but in immunized rabbit localisation of the O139 LPS antigen is seen at the tips of the intact villi, within lamina propria and muscularis mucosa only. These observations suggest that the vaccine can effectively protect animals from any pathologic changes and eliminate V. cholerae O139 from the immunized animals.
    Matched MeSH terms: Vaccines, Attenuated/administration & dosage
  8. Ravichandran M, Ali SA, Rashid NH, Kurunathan S, Yean CY, Ting LC, et al.
    Vaccine, 2006 May 1;24(18):3750-61.
    PMID: 16102875
    In this paper, we describe the development of VCUSM2, a live metabolic auxotroph of Vibrio cholerae O139. Auxotrophy was achieved by mutating a house keeping gene, hemA, that encodes for glutamyl-tRNA reductase, an important enzyme in the C5 pathway for delta-aminolevulenic acid (ALA) biosynthesis, which renders this strain dependent on exogenous ALA for survival. Experiments using the infant mouse and adult rabbit models show that VCUSM2 is a good colonizer of the small intestine and elicits greater than a four-fold rise in vibriocidal antibodies in vaccinated rabbits. Rabbits vaccinated with VCUSM2 were fully protected against subsequent challenge with 1 x 10(11) CFU of the virulent wild type (WT) strain. Experiments using ligated ileal loops of rabbits show that VCUSM2 is 2.5-fold less toxic at the dose of 1 x 10(6) CFU compared to the WT strain. Shedding of VCUSM2 in rabbits were found to occur for no longer than 4 days and its maximum survival rate in environmental waters is 8 days compared to the greater than 20 days for the WT strain. VCUSM2 is thus a potential vaccine candidate against infection by V. cholerae O139.
    Matched MeSH terms: Vaccines, Attenuated/administration & dosage
  9. Kuiek AM, Ooi PT, Yong CK, Ng CF
    Trop Anim Health Prod, 2015 Oct;47(7):1337-42.
    PMID: 26070293 DOI: 10.1007/s11250-015-0868-6
    Porcine reproductive and respiratory syndrome (PRRS) is a disease that is both highly contagious and of great economic importance in Malaysia. Therefore, reliable and improved diagnostic methods are needed to facilitate disease surveillance. This study compared PRRSV antibody responses in oral fluid versus serum samples following PRRS modified live (MLV) vaccination using commercial antibody ELISA kits (IDEXX Laboratories, Inc.). The study involved two pig farms located in Perak and Selangor, Malaysia. Both farms were vaccinated with PRRS MLV 1 month prior to sample collection. Thirty-five animals were used as subjects in each farm. These 35 animals were divided into 7 different categories: gilts, young sows, old sows, and four weaner groups. Oral fluid and serum samples were collected from these animals individually. In addition, pen oral fluid samples were collected from weaner groups. The oral fluid and serum samples were tested with IDEXX PRRS Oral Fluid Antibody Test Kit and IDEXX PRRS X3 Antibody Test Kit, respectively. The results were based on sample to positive ratio (S/P ratio of the samples). Results revealed a significant and positive correlation between serum and oral fluid samples for both farm A (p = 0.0001, r = 0.681) and farm B (p = 0.0001, r = 0.601). In general, oral fluids provided higher S/P results than serum, but the patterns of response were highly similar, especially for the sow groups. Thus, the use of oral fluids in endemic farms is effective and economical, particularly for large herds. In conclusion, the authors strongly recommend the use of oral fluids for PRRS monitoring in endemic farms.
    Matched MeSH terms: Vaccines, Attenuated/administration & dosage
  10. Yee PTI, Tan SH, Ong KC, Tan KO, Wong KT, Hassan SS, et al.
    Sci Rep, 2019 03 18;9(1):4805.
    PMID: 30886246 DOI: 10.1038/s41598-019-41285-z
    Besides causing mild hand, foot and mouth infections, Enterovirus A71 (EV-A71) is associated with neurological complications and fatality. With concerns about rising EV-A71 virulence, there is an urgency for more effective vaccines. The live attenuated vaccine (LAV) is a more valuable vaccine as it can elicit both humoral and cellular immune responses. A miRNA-based vaccine strain (pIY) carrying let-7a and miR-124a target genes in the EV-A71 genome which has a partial deletion in the 5'NTR (∆11 bp) and G64R mutation (3Dp°l) was designed. The viral RNA copy number and viral titers of the pIY strain were significantly lower in SHSY-5Y cells that expressed both let-7a and miR-124a. Inhibition of the cognate miRNAs expressed in RD and SHSY-5Y cells demonstrated de-repression of viral mRNA translation. A previously constructed multiply mutated strain, MMS and the pIY vaccine strain were assessed in their ability to protect 4-week old mice from hind limb paralysis. The MMS showed higher amounts of IFN-γ ex vivo than the pIY vaccine strain. There was absence of EV-A71 antigen in the skeletal muscles and spinal cord micrographs of mice vaccinated with the MMS and pIY strains. The MMS and pIY strains are promising LAV candidates developed against severe EV-A71 infections.
    Matched MeSH terms: Vaccines, Attenuated/administration & dosage
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links