Displaying all 12 publications

Abstract:
Sort:
  1. Hanis F, Chung ELT, Kamalludin MH, Idrus Z
    J Equine Vet Sci, 2022 Nov;118:104130.
    PMID: 36182046 DOI: 10.1016/j.jevs.2022.104130
    The high prevalence of abnormal oral behavior (AOB) in working horses has been linked to management issues and the pathophysiology of this behavior remains unclear. Therefore, this study aims to elucidate the blood profile, hormones, and telomere length responses between low and high levels of AOB among different horse working groups. A total of 207 healthy horses from various breeds were initially selected from four working groups (leisure riding, equestrian, endurance, and patrolling) and observed for the time spent on AOB. Then, six horses each with higher and lower AOB than the population means were randomly selected from each of the working groups and categorized as high and low AOB horses, respectively. Blood samples were collected for hematology, biochemistry, cortisol, ghrelin, leptin, and relative telomere length analyzes. High AOB horses notably had higher values of glucose, alanine aminotransferase (ALT), alkaline phosphatase (ALP), and creatine kinase (CK) compared to low AOB horses. High AOB horses also recorded higher plasma cortisol and ghrelin, but lower leptin concentrations. Among working groups, both endurance and patrolling horses presented the highest values in sodium, potassium, chloride, phosphate, ALT, and CK. While patrolling horses had the lowest levels of urea, ALP, and albumin levels, equestrian and leisure horses recorded the highest and lowest plasma cortisol and leptin concentrations, respectively. Finally, the telomere length of endurance and patrolling horses were significantly greater than leisure and equestrian horses. The present findings suggest that AOB horses had distinctive physiological characteristics that could be linked to improper diet and a demanding workload, while ghrelin and leptin hormones could be potential biomarkers for this behavior.
    Matched MeSH terms: Telomere/genetics
  2. Kuan XY, Fauzi NSA, Ng KY, Bakhtiar A
    Mol Neurobiol, 2023 Aug;60(8):4169-4183.
    PMID: 37046137 DOI: 10.1007/s12035-023-03337-4
    Telomeres, also known as the "protective caps" of our chromosomes, shorten with each cell cycle due to the end replication problem. This process, termed telomere attrition, is associated with many age-related disorders, such as Alzheimer's disease (AD). Despite the numerous studies conducted in this field, the role of telomere attrition in the onset of the disease remains unclear. To investigate the causal relationship between short telomeres and AD, this review aims to highlight the primary factors that regulate telomere length and maintain its integrity, with an additional outlook on the role of oxidative stress, which is commonly associated with aging and molecular damage. Although some findings thus far might be contradictory, telomere attrition likely plays a crucial role in the progression of AD due to its close association with oxidative stress. The currently available treatments for AD are only symptomatic without affecting the progression of the disease. The components of telomere biology discussed in this paper have previously been studied as an alternative treatment option for several diseases and have exhibited promising in vitro and in vivo results. Hence, this should provide a basis for future research to develop a potential therapeutic strategy for AD. (Created with BioRender.com).
    Matched MeSH terms: Telomere/genetics
  3. Ibrahim N, Gan KB, Mohd Yusof NY, Goh CT, Krupa B N, Tan LL
    Talanta, 2024 Jul 01;274:125916.
    PMID: 38547835 DOI: 10.1016/j.talanta.2024.125916
    In this report, a facile and label-free electrochemical RNA biosensor is developed by exploiting methylene blue (MB) as an electroactive positive ligand of G-quadruplex. The electrochemical response mechanism of the nucleic acid assay was based on the change in differential pulse voltammetry (DPV) signal of adsorbed MB on the immobilized human telomeric G-quadruplex DNA with a loop that is complementary to the target RNA. Hybridization between synthetic positive control RNA and G-quadruplex DNA probe on the transducer platform rendered a conformational change of G-quadruplex to double-stranded DNA (dsDNA), and increased the redox current of cationic MB π planar ligand at the sensing interface, thereby the electrochemical signal of the MB-adsorbed duplex is proportional to the concentration of target RNA, with SARS-CoV-2 (COVID-19) RNA as the model. Under optimal conditions, the target RNA can be detected in a linear range from 1 zM to 1 μM with a limit of detection (LOD) obtained at 0.59 zM for synthetic target RNA and as low as 1.4 copy number for positive control plasmid. This genosensor exhibited high selectivity towards SARS-CoV-2 RNA over other RNA nucleotides, such as SARS-CoV and MERS-CoV. The electrochemical RNA biosensor showed DPV signal, which was proportional to the 2019-nCoV_N_positive control plasmid from 2 to 200000 copies (R2 = 0.978). A good correlation between the genosensor and qRT-PCR gold standard was attained for the detection of SARS-CoV-2 RNA in terms of viral copy number in clinical samples from upper respiratory specimens.
    Matched MeSH terms: Telomere/genetics
  4. Osahor AN, Tan CY, Sim EU, Lee CW, Narayanan K
    Anal Biochem, 2014 Oct 1;462:26-8.
    PMID: 24929088 DOI: 10.1016/j.ab.2014.05.030
    When recombineering bacterial artificial chromosomes (BACs), it is common practice to design the ends of the donor molecule with 50 bp of homology specifying its insertion site. We demonstrate that desired recombinants can be produced using intermolecular homologies as short as 15 bp. Although the use of shorter donor end regions decreases total recombinants by several fold, the frequency of recombinants with correctly inserted donor molecules was high enough for easy detection by simple polymerase chain reaction (PCR) screening. This observation may have important implications for the design of oligonucleotides for recombineering, including significant cost savings, especially for high-throughput projects that use large quantities of primers.
    Matched MeSH terms: Telomere/genetics
  5. Sasidharan S, Jothy SL, Kavitha N, Chen Y, Kanwar JR
    Asian Pac J Cancer Prev, 2015;16(18):8671.
    PMID: 26745135
    Matched MeSH terms: Telomere/genetics
  6. Rajendran P, Alzahrani AM, Hanieh HN, Kumar SA, Ben Ammar R, Rengarajan T, et al.
    J Cell Physiol, 2019 12;234(12):21485-21492.
    PMID: 31144309 DOI: 10.1002/jcp.28895
    Senescence and autophagy play important roles in homeostasis. Cellular senescence and autophagy commonly cause several degenerative processes, including oxidative stress, DNA damage, telomere shortening, and oncogenic stress; hence, both events are known to be interrelated. Autophagy is well known for its disruptive effect on human diseases, and it is currently proposed to have a direct effect on triggering senescence and quiescence. However, it is yet to be proven whether autophagy has a positive or negative impact on senescence. It is known that elevated levels of autophagy induce cell death, whereas inadequate autophagy can trigger cellular senescence. Both have important roles in human diseases such as aging, renal degeneration, neurodegenerative disorders, and cancer. Therefore, this review aims to highlight the relevance of senescence and autophagy in selected human ailments through a summary of recent findings on the connection and effects of autophagy and senescence in these diseases.
    Matched MeSH terms: Telomere/genetics
  7. Imran SAM, Yazid MD, Idrus RBH, Maarof M, Nordin A, Razali RA, et al.
    Int J Mol Sci, 2021 Apr 09;22(8).
    PMID: 33918710 DOI: 10.3390/ijms22083888
    Epithelial-Mesenchymal Transition (EMT) was first discovered during the transition of cells from the primitive streak during embryogenesis in chicks. It was later discovered that EMT holds greater potential in areas other than the early development of cells and tissues since it also plays a vital role in wound healing and cancer development. EMT can be classified into three types based on physiological functions. EMT type 3, which involves neoplastic development and metastasis, has been the most thoroughly explored. As EMT is often found in cancer stem cells, most research has focused on its association with other factors involving cancer progression, including telomeres. However, as telomeres are also mainly involved in aging, any possible interaction between the two would be worth noting, especially as telomere dysfunction also contributes to cancer and other age-related diseases. Ascertaining the balance between degeneration and cancer development is crucial in cell biology, in which telomeres function as a key regulator between the two extremes. The essential roles that EMT and telomere protection have in aging reveal a potential mutual interaction that has not yet been explored, and which could be used in disease therapy. In this review, the known functions of EMT and telomeres in aging are discussed and their potential interaction in age-related diseases is highlighted.
    Matched MeSH terms: Telomere/genetics
  8. Vazifehmand R, Ali DS, Homaie FM, Jalalvand FM, Othman Z, Deming C, et al.
    Curr Cancer Drug Targets, 2024;24(12):1262-1274.
    PMID: 38357955 DOI: 10.2174/0115680096274769240115165344
    BACKGROUND: Due to the existence of tumor stem cells with tumorigenicity properties and resistance patterns, treatment of glioblastoma is not easy. Hypoxia is a major concern in glioblastoma therapy. Telomerase activity and telomere length alterations have been known to play a critical role in glioblastoma progression and invasion.

    OBJECTIVE: This study aimed to investigate the effects of HSV-G47Δ oncolytic virus on telomerase and telomere length alterations in U251GBMCSCs (U251-Glioblastoma cancer stem cells) under hypoxia and normoxia conditions.

    METHODS: U251-CSCs were exposed to the HSV-G47Δ virus in optimized MOI (Multiplicity of infection= 1/14 hours). An absolute telomere length and gene expression of telomerase subunits were determined using an absolute human telomere length quantification PCR assay. Furthermore, a bioinformatics pathway analysis was carried out to evaluate physical and genetic interactions between dysregulated genes with other potential genes and pathways.

    RESULTS: Data revealed that U251CSCs had longer telomeres when exposed to HSV-G47Δ in normoxic conditions but had significantly shorter telomeres in hypoxic conditions. Furthermore, hTERC, DKC1, and TEP1 genes were significantly dysregulated in hypoxic and normoxic microenvironments. The analysis revealed that the expression of TERF2 was significantly reduced in both microenvironments, and two critical genes from the MRN complex, MER11 and RAD50, were significantly upregulated in normoxic conditions. RAD50 showed a significant downregulation pattern in the hypoxic niche. Our results suggested that repair complex in the telomeric structure could be targeted by HSV-G47Δ in both microenvironments.

    CONCLUSION: In the glioblastoma treatment strategy, telomerase and telomere complex could be potential targets for HSV-G47Δ in both microenvironments.

    Matched MeSH terms: Telomere/genetics
  9. Campa D, Barrdahl M, Santoro A, Severi G, Baglietto L, Omichessan H, et al.
    Breast Cancer Res, 2018 04 17;20(1):29.
    PMID: 29665866 DOI: 10.1186/s13058-018-0955-5
    BACKGROUND: Leukocyte telomere length (LTL) and mitochondrial genome (mtDNA) copy number and deletions have been proposed as risk markers for various cancer types, including breast cancer (BC).

    METHODS: To gain a more comprehensive picture on how these markers can modulate BC risk, alone or in conjunction, we performed simultaneous measurements of LTL and mtDNA copy number in up to 570 BC cases and 538 controls from the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. As a first step, we measured LTL and mtDNA copy number in 96 individuals for which a blood sample had been collected twice with an interval of 15 years.

    RESULTS: According to the intraclass correlation (ICC), we found very good stability over the time period for both measurements, with ICCs of 0.63 for LTL and 0.60 for mtDNA copy number. In the analysis of the entire study sample, we observed that longer LTL was strongly associated with increased risk of BC (OR 2.71, 95% CI 1.58-4.65, p = 3.07 × 10- 4 for highest vs. lowest quartile; OR 3.20, 95% CI 1.57-6.55, p = 1.41 × 10- 3 as a continuous variable). We did not find any association between mtDNA copy number and BC risk; however, when considering only the functional copies, we observed an increased risk of developing estrogen receptor-positive BC (OR 2.47, 95% CI 1.05-5.80, p = 0.04 for highest vs. lowest quartile).

    CONCLUSIONS: We observed a very good correlation between the markers over a period of 15 years. We confirm a role of LTL in BC carcinogenesis and suggest an effect of mtDNA copy number on BC risk.

    Matched MeSH terms: Telomere/genetics
  10. Looi LM, Cheah PL, Ng MH, Yip CH, Mun KS, Rahman NA
    Asian Pac J Cancer Prev, 2010;11(3):713-6.
    PMID: 21039041
    A study was initiated to explore possible differences in handling telomere attrition in the most common lignant and benign tumours of the breast in Malaysian women. Infiltrating ductal carcinoma (IDC) and fibroadenoma (FA) represented the malignant and benign prototypes respectively. 29 IDC, 28 FA and 22 benign non-lesional control (BNL) breast tissue samples were analysed for telomerase activation using a Telomerase PCR ELISA kit (Boehringer Mannheim). In addition, 23 IDC, 12 FA and 14 BNL were subjected to telomere length determination with a TeloTAGGG Telomere Length Assay Kit (Roche Diagnostic GmbH, Germany), following digestion of genomic DNA by frequently cutting restriction enzymes RsaI and HinfI. Mean telomerase activity in IDC (A450nm=0.3338), but not FA (A450nm=0.0003) was significantly raised (p<0.05) compared with BNL (A450nm=0.0031). Similarly IDC (1.2 kb), but not FA (2.2 kb), showed significant telomere shortening (p<0.05) relative to BNL (2.9 kb). The findings imply that telomere attrition and telomerase activation differ between malignant and benign tumours of the breast and may be important for targeted therapy.
    Matched MeSH terms: Telomere/genetics*
  11. Makpol S, Yaacob N, Zainuddin A, Yusof YA, Ngah WZ
    Afr J Tradit Complement Altern Med, 2009 Jul 03;6(4):560-72.
    PMID: 20606778
    The objective of this study was to investigate the modulatory effect of Chlorella vulgaris on cultured fibroblast cells derived from young and old aged individuals focusing on DNA damage, telomere length and telomerase activity. Dose-response test of the algal extract on cells in both age groups revealed that optimum viability was observed at a concentration of 50 microg/ml. Results obtained showed that Chlorella vulgaris exhibited protective effects against H(2)O(2)-induced oxidative stress as shown by the reduction in damaged DNA caused by H(2)O(2) treatment (p<0.05) in Chlorella vulgaris pre- and post-treated groups (p<0.05). Pre-treatment of Chlorella vulgaris resulted in a significant decrease in DNA damage suggesting a bioprotective effect against free radical attacks. A decline in DNA damage was observed in post-treated cells which proves Chlorella vulgaris to present bioremediative properties. In cells induced with oxidative stress, telomere length decreased significantly coupled with a concomitant decline of telomerase activity (p<0.05). However, these reductions were prevented with prior and post treatment of Chlorella vulgaris. Therefore, we concluded that Chlorella vulgaris exhibited bioprotective effects especially in cells obtained from young donor but were more bioremediative for cells obtained from old donor as indicated by DNA damage, telomere shortening and reduction in telomerase activity.
    Matched MeSH terms: Telomere/genetics
  12. Machiela MJ, Hofmann JN, Carreras-Torres R, Brown KM, Johansson M, Wang Z, et al.
    Eur Urol, 2017 Nov;72(5):747-754.
    PMID: 28797570 DOI: 10.1016/j.eururo.2017.07.015
    BACKGROUND: Relative telomere length in peripheral blood leukocytes has been evaluated as a potential biomarker for renal cell carcinoma (RCC) risk in several studies, with conflicting findings.

    OBJECTIVE: We performed an analysis of genetic variants associated with leukocyte telomere length to assess the relationship between telomere length and RCC risk using Mendelian randomization, an approach unaffected by biases from temporal variability and reverse causation that might have affected earlier investigations.

    DESIGN, SETTING, AND PARTICIPANTS: Genotypes from nine telomere length-associated variants for 10 784 cases and 20 406 cancer-free controls from six genome-wide association studies (GWAS) of RCC were aggregated into a weighted genetic risk score (GRS) predictive of leukocyte telomere length.

    OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Odds ratios (ORs) relating the GRS and RCC risk were computed in individual GWAS datasets and combined by meta-analysis.

    RESULTS AND LIMITATIONS: Longer genetically inferred telomere length was associated with an increased risk of RCC (OR=2.07 per predicted kilobase increase, 95% confidence interval [CI]:=1.70-2.53, p<0.0001). As a sensitivity analysis, we excluded two telomere length variants in linkage disequilibrium (R2>0.5) with GWAS-identified RCC risk variants (rs10936599 and rs9420907) from the telomere length GRS; despite this exclusion, a statistically significant association between the GRS and RCC risk persisted (OR=1.73, 95% CI=1.36-2.21, p<0.0001). Exploratory analyses for individual histologic subtypes suggested comparable associations with the telomere length GRS for clear cell (N=5573, OR=1.93, 95% CI=1.50-2.49, p<0.0001), papillary (N=573, OR=1.96, 95% CI=1.01-3.81, p=0.046), and chromophobe RCC (N=203, OR=2.37, 95% CI=0.78-7.17, p=0.13).

    CONCLUSIONS: Our investigation adds to the growing body of evidence indicating some aspect of longer telomere length is important for RCC risk.

    PATIENT SUMMARY: Telomeres are segments of DNA at chromosome ends that maintain chromosomal stability. Our study investigated the relationship between genetic variants associated with telomere length and renal cell carcinoma risk. We found evidence suggesting individuals with inherited predisposition to longer telomere length are at increased risk of developing renal cell carcinoma.

    Matched MeSH terms: Telomere/genetics*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links