METHODS: Root canal was prepared using stainless steel K-files™ and ProTaper™ and subjected to manual and ultrasonic irrigation using 6% NaOCl+2% CHX, 6% NaOCl+2% QAS and saline as control. For confocal-microscopy, Raman spectroscopy and SEM analysis before and after treatment, Enterococcus faecalis cultured for 7 days. Raman spectroscopy analysis was done across cut section of gutta percha/sealer-dentine to detect resin infiltration. Indentation of mechanical properties was evaluated using a Berkovich indenter. The contact angle of irrigants and surface free energy were evaluated. Mineralization nodules were detected through Alazarin red after 14 days.
RESULTS: Control biofilms showed dense green colonies. Majority of E. faecalis bacteria were present in biofilm fluoresced red in NaOCl+2% QAS group. There was reduction of 484cm-1 Raman band and its intensity reached lowest with NaOCl+2% QAS. There was an increase in 1350-1420cm-1 intensity in the NaOCl+2% CHX groups. Gradual decrease in 1639cm-1 and 1609cm-1 Raman signal ratios were seen in the resin-depth region of 17μm>, 14.1μm> and 13.2μm for NaOCl+2% QAS, NaOCl+2% CHX and control groups respectively. All obturated groups showed an intact sealer/dentine interface with a few notable differences. 0.771 and 83.5% creep indentation distance for NaOCl+2% QAS ultrasonic groups were observed. Highest proportion of polar component was significantly found in the NaOCl+2% QAS groups which was significantly higher as compared to other groups. Mineralized nodules were increased in NaOCl+2% QAS.
SIGNIFICANCE: Favorable antimicrobial and endodontic profile of the NaOCl+2% QAS solution might suggest clinical use for it for more predictable reduction of intracanal bacteria.
METHODS: Enterococcus faecalis, Streptococcus sanguinis, Fusobacterium nucleatum, Porphyromonas gingivalis and Prevotella intermedia were suspended as follows: Iso-osmotic group 0.9% NaCl; Hypo-osmotic group "ultrapure water"; Hyper-osmotic group 9% NaCl solution for 120 hours before exposure to 0.0001% NaOCl for 10 minutes. Quantitative analyses of viable cells were performed at 0 and 120 hours and after exposure to NaOCl to obtain colony forming units (CFU/mL). A linear mixed-effects model was used to find the association between mean CFU/mL (logarithmic transformation) and the interaction of solution Group and Time (P<0.001).
RESULTS: F. nucleatum, P. gingivalis and P. intermedia did not survive after 24 hours in any of the solutions and were excluded from further testing. For S. sanguinis there were significant differences at each time interval, when holding solution group constant. After 120 hours, the Hyper-osmotic group presented with the highest CFU/mL and was significantly different to the Iso-osmotic group (P<0.001). For E. Faecalis, there was a significant difference for each pairwise comparison of time (P<0.001) in mean CFU/mL between 0 hours and 120 hours for the Iso-osmotic and Hyper-osmotic groups. At 120 hours, no significant differences were found between the three groups. Significant differences were also found between 0 hours and Post-NaOCl administration, and between 120 hours and Post-NaOCl administration for all three groups (P<0.001). Exposure to NaOCl after hypo-osmotic stress was associated with significantly less CFU/mL for S. sanguinis compared to hyperosmosis and iso-osmosis (P<0.001) and for E. Faecalis only compared to hyperosmosis (P<0.001).
CONCLUSION: S. sanguinis and E. faecalis were able to withstand osmotic stress for 120 hours. Hypo-osmotic stress before contact with NaOCl was associated with lower viable bacterial numbers, when compared to the other media for the above species. Hyper-osmotic stress was associated with higher viable bacterial numbers after NaOCl exposure for E. faecalis.
METHODS: A review of clinical cases reporting NaOCl accidents was conducted in June 2016 using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist; it combined an electronic search of the PubMed database and an extensive manual search.
RESULTS: Forty full-text articles corresponding to 52 case reports published between 1974 and 2015 were selected. Four main categories of data were highlighted: general and clinical information, clinical signs and symptoms of NaOCl extrusions, management of NaOCl extrusions, and healing and prognosis. Overall, up to now, clinical cases were reported in a very unsystematic manner, and some relevant information was missing.
CONCLUSIONS: A better understanding of the potential causes, management, and prognosis of NaOCl accidents requires a standardization of reported data; this study proposes a template that can fulfill this objective.
METHODOLOGY: Dentin blocks were sterilized and E. faecalis and C. albicans microbial colonies were counted for colony-forming-units against 2%k21, 2%CHX and Ca(OH)2 medicaments. Biofilm colonies after 7 days on dentin were analysed using confocal laser scanning microscopy with live/dead bacterial viability staining. TEM was done to study dentin collagen matrix. Dentin discs from 3rd day and 7th day well plate was used for Raman spectra and observed under fluorescent-microscope. Docking studies were carried out on MMP-2 S1 binding-domain with k21.
RESULTS: There was reduction of E. faecalis/C. albicans when k21, chlorhexidine and calcium hydroxide were used with highest percentage in 2%k21 treated specimens. 2%k21 showed dense and regular collagen network with intact cross-banding and decreased Raman intensity for 2%k21 on 3rd day. NaOCl + k21 showed least adherence, whereas saline groups showed highest adherence of E. faecalis and C. albicans to root-canal dentin. Alizarin red staining of hDPSCs revealed calcium deposition in all groups with significant difference seen amongst 2%k21 groups. MMP-2 ligand binding was seen accurately indicating possible target sites for k21 intervention.
CONCLUSION: 2%k21 can be considered as alternative intracanal medicament.
Settings and Design: Endodontic treatment aims at disinfection and then obturation of root canal system in to prevent re-infection. Root canal irrigants play a pivotal role in the disinfection process. One of the important properties of an irrigant is the removal of complete smear layer and debris. Smear layer has the potential to protect bacteria within the dentinal tubules; therefore removal may be prudent. Smear layer removal increases the bond strength of resin sealers which results in better apical seal.
Materials and Methods: Forty extracted single-rooted, primary teeth were allocated randomly into four groups of ten each: Group 1 - NaOCl, Group 2 - Nutmeg, Group 3 - Myrobolan, and Group 4 - Tulsi. Samples were stored in sterile saline (0.9% NaCl) and then decoronated at the level of the cementoenamel junction. Working length was determined followed by appropriate irrigation. The roots were split into two halves with a chisel and were stored in 2.5% glutaraldehyde solution for 24 h. After fixation, the samples were dehydrated in ethanol series (70, 90, and 95 and twice at 100%). Each specimen was mounted on Al stub and sputter coated with a 20 nm layer of gold. Samples were then examined using a SEM quantum 60 at magnification of ×2000.
Results: Tulsi demonstrated the most statistically significant results followed by myrobolan and nutmeg extract. All herbal extracts were found to be significantly effective than 2.5% NaOCl.
Conclusion: Tulsi, nutmeg and myrobolan can be effectively used as an irrigant in primary teeth.
Materials and Methods: An audit at the department of endodontics at dental specialty centre kingdom of Saudi Arabia was carried out. The audit was conducted by developing endodontics treatment and success predictors based on evidence, that can be measured for endodontic care. A total of 12 months' data was examined from the previous dental records. Ten clinical cards were which included root canal treatment were selected. The audit was carried out for a minimum of 50 teeth and a maximum of 200 teeth. The radiographs of record cards were studied and a single dentist completed the audit tool.
Results: The vitality test was performed in 1.98% cases, intra-canal medicament was used and named in 3.96% cases, 3.96% the teeth were extracted due to endodontic failure. Further, in 6.93% of the cases that were identified had certain spaces but overall root canal filling was evaluated as satisfactory.
Conclusion: The vitality test, type of intracanal medicament, and assessment of root canal filling were not done, but there was an overall performance of predictors for endodontic treatment.
MATERIALS AND METHODS: An estimated 120 human root dentin disks were prepared, sterilized, and inoculated with E. faecalis strain (ATCC 29212) to develop a 3-weeks-old biofilm. The dentin discs were exposed to group I-control group: 5.25% sodium hypochlorite (NaOCl) (n = 20); group II-1% ALX + 5.25% NaOCl (n = 40); group III-1% alexidine (ALX) (n = 40) (Sigma-Aldrich, Mumbai, India); group IV-negative control: saline (n = 20). After exposure, the dentin disks were stained with the fluorescent live/dead dye and evaluated with a confocal scanning electron microscope to calculate the proportion of dead cells. Statistical analysis was done using the Kruskal-Wallis and Mann-Whitney U test (p < 0.05).
RESULTS: The maximum proportion of dead cells were seen in the groups treated with the combination of 1% ALX + 5.25% NaOCl (94.89%) and in the control group 5.25% NaOCl (93.14%). The proportion of dead cells presented in the 1% ALX group (51.79%) and negative control group saline (15.10%) were comparatively less.
CONCLUSION: The antibacterial efficiency of a combination of 1% ALX and 5.25% NaOCl was more effective when compared with 1% ALX alone.
CLINICAL SIGNIFICANCE: Alexidine at 1% could be used as an alternative endodontic irrigant to chlorhexidine, as alexidine does not form any toxic precipitates with sodium hypochlorite. The disinfection regimen comprising a combination of 1% ALX and 5.25% NaOCl is effective in eliminating E. faecalis biofilms.