Displaying all 7 publications

Abstract:
Sort:
  1. Kho KL, Tay ST
    J Med Entomol, 2019 02 25;56(2):526-532.
    PMID: 30312440 DOI: 10.1093/jme/tjy169
    Rickettsia felis (Rickettsiales: Rickettsiaceae) is an emergent human pathogen that causes febrile illnesses in various parts of the world. This study describes the identification and growth characteristics of a R. felis-like organism (designated as Rickettsia sp. TH2014) cultured from Ctenocephalides orientis fleas in rural Malaysia. In this study, culturing of rickettsiae from filtered triturated flea lysates was performed in Aedes albopictus C6/36 cells. Cytopathic effects were observed from one of the samples 4 d post-inoculation. Electron microscopy revealed actively replicating intracytosolic coccobacillary organisms in the rickettsia-infected cells. Sequence analysis of amplified citrate synthase (gltA) gene fragment shows complete match of the rickettsia with Rickettsia sp. Rf31 in Southeast Asia, and 'Candidatus Rickettsia senegalensis' strain PU01-02 in Africa. The whole-genome sequence of Rickettsia sp. TH2014 was determined and assembled. The estimated genome size and guanine + cytosine content of the rickettsia are 1.37 Mb and 32.9%, respectively. The high values of average nucleotide identity and tetra-nucleotide signature correlation index obtained from pairwise genome comparison study suggest the identification of the rickettsia as R. felis. The whole-genome single-nucleotide polymorphism analysis demonstrates close genetic relatedness of the rickettsia with R. felis and Rickettsia asemboensis. However, based on sequence analyses of rickettsial genes (16S rDNA, gltA, ompB, and sca4), Rickettsia sp. TH2014 is found to be distinct from R. felis and R. asemboensis. The sequence analyses reveal that Rickettsia sp. TH2014 is highly similar to 'Ca. Rickettsia senegalensis' detected in fleas from Africa, Asia, and North America. Further investigation to provide insights on pathogenic potential and transmission dynamics of the rickettsia is warranted.
    Matched MeSH terms: Rickettsia/classification*
  2. Azrizal-Wahid N, Sofian-Azirun M, Low VL
    PMID: 33609991 DOI: 10.1016/j.cimid.2021.101621
    Flea-borne pathogens were screened from 100 individual cat fleas using a PCR approach, of which 38 % were infected with at least one bacterium. Overall, 28 % of the flea samples were positive for Bartonella as inferred from ITS DNA region. Of these, 25 % (7/28) were identified as Bartonella clarridgeiae, 42.9 % (12/28) as Bartonella henselae consisted of two different strains, and 32.1 % (9/28) as Bartonella koehlerae, which was detected for the first time in Malaysia. Sequencing of gltA amplicons detected Rickettsia DNA in 14 % of cat flea samples, all of them identified as Rickettsia asembonensis (100 %). None of the flea samples were positive for Mycoplasma DNA in 16S rRNA gene detection. Four fleas were co-infected with Bartonella and Rickettsia DNAs. Statistical analyses reveal no significant association between bacterial infection and mtDNA diversity of the cat flea. Nevertheless, in all types of pathogen infections, infected populations demonstrated lower nucleotide and haplotype diversities compared to uninfected populations. Moreover, lower haplotype numbers were observed in infected populations.
    Matched MeSH terms: Rickettsia/classification
  3. Low VL, Tan TK, Khoo JJ, Lim FS, AbuBakar S
    Acta Trop, 2020 Feb;202:105282.
    PMID: 31778642 DOI: 10.1016/j.actatropica.2019.105282
    Rickettsioses are emerging, and re-emerging diseases caused by obligate intracellular arthropod-borne bacteria that infect humans and animals worldwide. Various rickettsiae such as Orientia, Rickettsia, Anaplasma and Ehrlichia have been circulated in companion, domesticated and wild animals through bites of infected ticks, fleas, lice or mites. This review summarizes the infections of rickettsiae, including the newly discovered regional species Rickettsia thailandii, Candidatus Rickettsia sepangensis, Candidatus Rickettsia johorensis, Candidatus Rickettsia laoensis, Candidatus Rickettsia mahosotii, Candidatus Rickettsia khammouanensis, Candidatus Anaplasma pangolinii, and other novel genotypes in vectors, humans and animals in Southeast Asia. Issues on some unidentified rickettsiae that elicit immune responses and production of antibodies that are cross-reactive with the antigens used are discussed. Knowledge gaps which required attention are also identified in this review.
    Matched MeSH terms: Rickettsia/classification*
  4. Tay ST, Koh FX, Kho KL, Sitam FT
    Emerg Infect Dis, 2015 Mar;21(3):545-7.
    PMID: 25695615 DOI: 10.3201/eid2103.141457
    Matched MeSH terms: Rickettsia/classification
  5. Tay ST, Mokhtar AS, Low KC, Mohd Zain SN, Jeffery J, Abdul Aziz N, et al.
    Med Vet Entomol, 2014 Aug;28 Suppl 1:104-8.
    PMID: 25171613 DOI: 10.1111/mve.12075
    Rickettsioses are emerging zoonotic diseases reported worldwide. In spite of the serological evidence of spotted fever group rickettsioses in febrile patients in Malaysia, limited studies have been conducted to identify the animal reservoirs and vectors of rickettsioses. This study investigated the presence of rickettsiae in the tissue homogenates of 95 wild rats and 589 animal ectoparasites. Using PCR assays targeting the citrate synthase gene (gltA), rickettsial DNA was detected in the tissue homogenates of 13 (13.7%) wild rats. Sequence analysis of the gltA amplicons showed 98.6-100% similarity with those of Rickettsia honei/R. conorii/R. raoultii (Rickettsiales: Rickettsiaceae). Sequence analysis of outer membrane protein A gene (ompA) identified Rickettsia sp. TCM1 strain from two rats. No rickettsia was detected from Laelaps mites, Rhipicephalus sanguineus and Haemaphysalis bispinosa ticks, and Felicola subrostratus lice in this study. R. felis was identified from 32.2% of 177 Ctenocephalides felis fleas. Sequence analysis of the gltA amplicons revealed two genotypes of R. felis (Rf31 and RF2125) in the fleas. As wild rats and cat fleas play an important role in the enzoonotic maintenance of rickettsiae, control of rodent and flea populations may be able to reduce transmission of rickettsioses in the local setting.
    Matched MeSH terms: Rickettsia/classification
  6. Nguyen VL, Colella V, Greco G, Fang F, Nurcahyo W, Hadi UK, et al.
    Parasit Vectors, 2020 Aug 15;13(1):420.
    PMID: 32799914 DOI: 10.1186/s13071-020-04288-8
    BACKGROUND: Ticks and fleas are considered amongst the most important arthropod vectors of medical and veterinary concern due to their ability to transmit pathogens to a range of animal species including dogs, cats and humans. By sharing a common environment with humans, companion animal-associated parasitic arthropods may potentially transmit zoonotic vector-borne pathogens (VBPs). This study aimed to molecularly detect pathogens from ticks and fleas from companion dogs and cats in East and Southeast Asia.

    METHODS: A total of 392 ticks and 248 fleas were collected from 401 infested animals (i.e. 271 dogs and 130 cats) from China, Taiwan, Indonesia, Malaysia, Singapore, Thailand, the Philippines and Vietnam, and molecularly screened for the presence of pathogens. Ticks were tested for Rickettsia spp., Anaplasma spp., Ehrlichia spp., Babesia spp. and Hepatozoon spp. while fleas were screened for the presence of Rickettsia spp. and Bartonella spp.

    RESULT: Of the 392 ticks tested, 37 (9.4%) scored positive for at least one pathogen with Hepatozoon canis being the most prevalent (5.4%), followed by Ehrlichia canis (1.8%), Babesia vogeli (1%), Anaplasma platys (0.8%) and Rickettsia spp. (1%) [including Rickettsia sp. (0.5%), Rickettsia asembonensis (0.3%) and Rickettsia felis (0.3%)]. Out of 248 fleas tested, 106 (42.7%) were harboring at least one pathogen with R. felis being the most common (19.4%), followed by Bartonella spp. (16.5%), Rickettsia asembonensis (10.9%) and "Candidatus Rickettsia senegalensis" (0.4%). Furthermore, 35 Rhipicephalus sanguineus ticks were subjected to phylogenetic analysis, of which 34 ticks belonged to the tropical and only one belonged to the temperate lineage (Rh. sanguineus (sensu stricto)).

    CONCLUSION: Our data reveals the circulation of different VBPs in ticks and fleas of dogs and cats from Asia, including zoonotic agents, which may represent a potential risk to animal and human health.

    Matched MeSH terms: Rickettsia/classification
  7. Tay ST, Rohani MY, Ho TM, Devi S
    PMID: 12757225
    Isolation of rickettsiae from patients' blood samples and organ samples of wild rodents from areas with high seroprevalence of rickettsial infections was attempted using cell culture assay and animal passages. L929 mouse fibroblast cells grown in 24 well tissue culture plate were inoculated with buffy coat of febrile patients and examined for the growth of rickettsiae by Giemsa, Gimenez staining and direct immunofluorescence assay. No rickettsiae were isolated from 48 patients' blood samples. No symptomatic infections were noted in mice or guinea pigs infected with 50 organ samples of wild rodents. There was no rickettsial DNA amplified from these samples using various PCR detection systems for Orientia tsutsugamushi, typhus and spotted fever group rickettsiae.
    Matched MeSH terms: Rickettsia/classification
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links