Displaying all 4 publications

Abstract:
Sort:
  1. Alam MZ, Mansor MF, Jalal KC
    J Hazard Mater, 2009 Mar 15;162(2-3):708-15.
    PMID: 18599210 DOI: 10.1016/j.jhazmat.2008.05.085
    Optimization of decolorization of methylene blue (MB) dye by lignin peroxidase (LiP) enzyme produced by white-rot fungus Phanerochaete chrysosporium using sewage treatment plant (STP) sludge as a major substrate was carried out in the laboratory. Optimization by the one-factor-at-a-time (OFAT) and statistical approach was carried out to determine the process conditions on optimum decolorization of MB dye using LiP enzyme in static mode. The OFAT method indicated that the optimum conditions for decolorization of MB dye (removal: 14-40%) was at temperature 55 degrees C, pH 5.0 with hydrogen peroxide (H(2)O(2)) concentration 4.0mM, MB dye concentration 20mg/L and LiP activity 0.487U/ml. The addition of veratryl alcohol to the reaction mixtures did not contribute any further increases in decolorization. The initial concentration of MB and the activity of LiP enzyme were further optimized using response surface methodology (RSM). The contour and surface plots suggested that the optimum initial concentration of MB and LiP activity predicted were 15mg/L and 0.687U/ml, respectively for the removal of 65%. The validation of the model showed that the decolorization process gave the higher removal of 90% in agitation mode compared to the static mode with 65% for 60min of incubation time by LiP enzyme.
    Matched MeSH terms: Phanerochaete/enzymology*
  2. Khan MH, Ali S, Fakhru'l-Razi A, Alam Z
    J Environ Sci Health B, 2007 May;42(4):381-6.
    PMID: 17474017
    Cellulase production was carried out by solid state bioconversion (SSB) method using rice straw, a lignocellulosic material and agricultural waste, as the substrate of three Trichoderma spp. and Phanerochaete chrysosporium in lab-scale experiments. The results were compared to select the best fungi among them for the production of cellulase. Phanerochaete chrysosporium was found to be the best among these species of fungi, which produced the highest cellulase enzyme of 1.43 IU/mL of filter paper activity (FPase) and 2.40 IU/mL of carboxymethylcellulose activity (CMCase). The "glucosamine" and "reducing sugar" parameters were observed to evaluate the growth and substrate utilization in the experiments. In the case of Phanerochaete Chrysosporium, the highest glucosamine concentration was 1.60 g/L and a high concentration of the release of reducing sugar was measured as 2.58 g/L obtained on the 4th day of fermentation. The pH values were also recorded. The range of the pH was about 5.15 to 5.56 in the case of Phanerochaete Chrysosporium.
    Matched MeSH terms: Phanerochaete/enzymology*
  3. Alam MZ, Mahmat ME, Muhammad N
    PMID: 16317964
    A laboratory-scale study of bioconversion of local lignocellulosic material, oil palm biomass (OPB) was conducted by evaluating the enzyme production through microbial treatment in solid state bioconversion (SSB). OPB in the form of empty fruit bunches (EFB) was used as a solid substrate and treated with the white-rot fungus, Phanerochaete chrysosporium, to produce ligninase. The results showed that the highest ligninase activity of 400.27 U/liter was obtained at day 12 of fermentation. While the optimum study indicated the enzyme production of 1472.8 U/liter with moisture content of 50%, 578.7 U/liter with 10% v/w of inoculum size, and 721.8 U/liter with co-substrate concentration of 1% (w/w) at days 9, 9 and 12 of fungal treatment, respectively. The parameters glucosamine and reducing sugar were observed to evaluate the growth and substrate utilization in the experiment.
    Matched MeSH terms: Phanerochaete/enzymology
  4. Alam MZ, Mansor MF, Jalal KC
    J Ind Microbiol Biotechnol, 2009 May;36(5):757-64.
    PMID: 19259713 DOI: 10.1007/s10295-009-0548-5
    A laboratory-scale study was carried out to produce lignin peroxidase (ligninase) by white rot fungus (Phanerochaete chrysosporium) using sewage-treatment-plant (STP) sludge as the major substrate. The optimization was done using full-factorial design (FFD) with agitation and aeration as the two parameters. Nine experiments indicated by the FFD were fermented in a stirred-tank bioreactor for 3 days. A second-order quadratic model was developed using the regression analysis of the experimental results with the linear, quadratic, and interaction effects of the parameters. Analysis of variance (ANOVA) showed a high coefficient of determination (R (2)) value of 0.972, thus indicating a satisfactory fit of the quadratic model with the experimental data. Using statistical analysis, the optimum aeration and agitation rates were determined to be 2.0 vvm and 200 rpm, respectively, with a maximum activity of 225 U l(-1) in the first 3 days of fermentation. The validation experiment showed the maximum activity of lignin peroxidase was 744 U l(-1) after 5 days of fermentation. The results for the tests of the stability of lignin peroxidase showed that the activity was more than 80% of the maximum for the first 12 h of incubation at an optimum pH of 5 and temperature of 55 degrees C.
    Matched MeSH terms: Phanerochaete/enzymology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links