Displaying all 13 publications

Abstract:
Sort:
  1. Zhong Y, Tan GW, Bult J, Veltmaat N, Plattel W, Kluiver J, et al.
    BMC Cancer, 2024 Apr 02;24(1):407.
    PMID: 38566053 DOI: 10.1186/s12885-024-12191-z
    BACKGROUND: Primary central nervous system lymphoma (PCNSL) are rare mature B-cell lymphoproliferative diseases characterized by a high incidence of MYD88 L265P and CD79B Y196 hotspot mutations. Diagnosis of PCNSL can be challenging. The aim of the study was to analyze the detection rate of the MYD88 L265P and CD79B Y196 mutation in cell free DNA (cfDNA) in plasma of patients with PCNSL.

    METHODS: We analyzed by digital droplet PCR (ddPCR) to determine presence of the MYD88 L265P and CD79B Y196 hotspot mutations in cfDNA isolated from plasma of 24 PCNSL patients with active disease. Corresponding tumor samples were available for 14 cases. Based on the false positive rate observed in 8 healthy control samples, a stringent cut-off for the MYD88 L265P and CD79B Y196 mutation were set at 0.3% and 0.5%, respectively.

    RESULTS: MYD88 L265P and CD79B Y196 mutations were detected in 9/14 (64%) and 2/13 (15%) tumor biopsies, respectively. In cfDNA samples, the MYD88 L265P mutation was detected in 3/24 (12.5%), while the CD79B Y196 mutation was not detected in any of the 23 tested cfDNA samples. Overall, MYD88 L265P and/or CD79B Y196 were detected in cfDNA in 3/24 cases (12.5%). The detection rate of the combined analysis did not improve the single detection rate for either MYD88 L265P or CD79B Y196.

    CONCLUSION: The low detection rate of MYD88 L265P and CD79B Y196 mutations in cfDNA in the plasma of PCNSL patients argues against its use in routine diagnostics. However, detection of MYD88 L265P by ddPCR in cfDNA in the plasma could be considered in challenging cases.

    Matched MeSH terms: Myeloid Differentiation Factor 88/genetics
  2. Feng M, Tan K, Zhang H, Duan X, Li S, Ma H, et al.
    Fish Shellfish Immunol, 2023 Oct;141:109059.
    PMID: 37678479 DOI: 10.1016/j.fsi.2023.109059
    High stocking density has been regarded as an adverse factor in bivalve aquaculture. However, its subsequent molecular response to pathogenic bacteria has been little studied. In order to study the question, a novel MyD88 was first cloned using adult noble scallops Chlamys nobilis (CnMyD88), and its tissue distribution was investigated. Then, 1860 juvenile scallops were divided into two groups with two initial densities of high density (200 individuals/layer, HD) and normal density (110 individuals/layer, ND) and in-situ cultured for three months, in which their growth, survival, and the differential expression of CnMyD88 were examined, respectively. Finally, scallops were injected with the Vibrio parahaemolyticus to assess the temporal expression of CnMyD88. As the results show, CnMyD88 cDNA has a full length of 2241 bp and contains an 1107 bp ORF that encodes a 368-derived protein. It was widely expressed in examined tissues with a significantly higher level in hemolymph, intestine, mantle, and gonad than others. Besides, the HD group showed lower growth (0.39 ± 0.05 mm/day) and survival (37.00 ± 8.49%) than the ND group (0.55 ± 0.02 mm/day and 76.82 ± 5.78%). More importantly, the HD group exhibited significantly lower expression levels of CnMyD88 in their examined tissues than the ND group. After V. parahaemolyticus challenging, CnMyD88 had significantly lower expression levels in the scallops from the HD group than that of the scallops from the ND group at 6th, 24th, and 36th. The present results indicated that high stocking density not only made adverse impacts on growth and survival but also may induce immunosuppression in the noble scallop. Therefore, appropriate low stocking density may be worth considering to adopt in scallop aquaculture.
    Matched MeSH terms: Myeloid Differentiation Factor 88/metabolism
  3. Trung NB, Nan FH, Lee MC, Loh JY, Gong HY, Lu MW, et al.
    Fish Shellfish Immunol, 2021 Dec;119:587-601.
    PMID: 34743023 DOI: 10.1016/j.fsi.2021.11.001
    Toll-like receptors (TLRs) are evolutionarily conserved proteins of pattern recognition receptors (PRRs) and play a crucial role in innate immune systems recognition of conserved pathogen-related molecular samples (PAMPs). We identified and characterized TLR18 from Nile tilapia (Oreochromis niloticus), OnTLR18, to elucidate its role in tissue expression patterns, modulation of gene expression after microbial challenge and TLR ligands, subcellular localization in fish and human cells, and the possible effectors TLR18 induces in a melanomacrophage-like cell line (tilapia head kidney (THK) cells). OnTLR18 expression was detected in all tissues examined, with the highest levels in the intestine and the lowest in the liver. OnTLR18 transcript was up-regulated in immune-related organs after bacterial and polyinosinic-polycytidylic acid (poly I:C) challenges and in the THK cells after lipopolysaccharide (LPS) stimulation. In transfected THK and human embryonic kidney (HEK) 293 cells, OnTLR18 localizes in the intracellular compartment. OnMyD88 and OnTRIF, but not OnTIRAP, were co-immunoprecipitated with OnTLR18, suggesting that the former two molecules are recruited by OnTLR18 as adaptors. The constitutively active form of OnTLR18 induced the production of pro-inflammatory cytokines, type I interferon (IFN), and antimicrobial peptides such as tumor necrosis factor α, interferon (IFN) d2.13, tilapia piscidin (TP)2, TP3, TP4, and hepcidin in THK cells. Our results suggest that OnTLR18 plays an important role in innate immunity through initiating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and IFN signaling pathways via OnMyD88 and OnTRIF and induces the production of various effectors in melanomacrophages.
    Matched MeSH terms: Myeloid Differentiation Factor 88/genetics; Myeloid Differentiation Factor 88/metabolism
  4. Aamir K, Sethi G, Afrin MR, Hossain CF, Jusuf PR, Sarker SD, et al.
    Life Sci, 2023 Aug 15;327:121856.
    PMID: 37307966 DOI: 10.1016/j.lfs.2023.121856
    BACKGROUND: Arjunolic acid (AA) is a potent phytochemical with multiple therapeutics effects. In this study, AA is evaluated on type 2 diabetic (T2DM) rats to understand the mechanism of β-cell linkage with Toll-like receptor 4 (TLR-4) and canonical Wnt signaling. However, its role in modulating TLR-4 and canonical Wnt/β-catenin crosstalk on insulin signaling remains unclear during T2DM. Aim The current study is aimed to examine the potential role of AA on insulin signaling and TLR-4-Wnt crosstalk in the pancreas of type 2 diabetic rats.

    METHOD: Multiple methods were used to determine molecular cognizance of AA in T2DM rats, when treated with different dosage levels. Histopathological and histomorphometry analysis was conducted using masson trichrome and H&E stains. While, protein and mRNA expressions of TLR-4/Wnt and insulin signaling were assessed using automated Western blotting (jess), immunohistochemistry, and RT-PCR.

    RESULTS: Histopathological findings revealed that AA had reversed back the T2DM-induced apoptosis and necrosis caused to rats pancreas. Molecular findings exhibited prominent effects of AA in downregulating the elevated level of TLR-4, MyD88, NF-κB, p-JNK, and Wnt/β-catenin by blocking TLR-4/MyD88 and canonical Wnt signaling in diabetic pancreas, while IRS-1, PI3K, and pAkt were all upregulated by altering the NF-κB and β-catenin crosstalk during T2DM.

    CONCLUSION: Overall results, indicate that AA has potential to develop as an effective therapeutic in the treatment of T2DM associated meta-inflammation. However, future preclinical research at multiple dose level in a long-term chronic T2DM disease model is warranted to understand its clinical relevance in cardiometabolic disease.

    Matched MeSH terms: Myeloid Differentiation Factor 88/metabolism
  5. Hasan MM, Madhavan P, Ahmad Noruddin NA, Lau WK, Ahmed QU, Arya A, et al.
    Pharm Biol, 2023 Dec;61(1):1135-1151.
    PMID: 37497554 DOI: 10.1080/13880209.2023.2230251
    CONTEXT: Arjunolic acid (AA) is a triterpenoid saponin found in Terminalia arjuna (Roxb.) Wight & Arn. (Combretaceae). It exerts cardiovascular protective effects as a phytomedicine. However, it is unclear how AA exerts the effects at the molecular level.

    OBJECTIVE: This study investigates the cardioprotective effects of arjunolic acid (AA) via MyD88-dependant TLR4 downstream signaling marker expression.

    MATERIALS AND METHODS: The MTT viability assay was used to assess the cytotoxicity of AA. LPS induced in vitro cardiovascular disease model was developed in H9C2 and C2C12 myotubes. The treatment groups were designed such as control (untreated), LPS control, positive control (LPS + pyrrolidine dithiocarbamate (PDTC)-25 µM), and treatment groups were co-treated with LPS and three concentrations of AA (50, 75, and 100 µM) for 24 h. The changes in the expression of TLR4 downstream signaling markers were evaluated through High Content Screening (HCS) and Western Blot (WB) analysis.

    RESULTS: After 24 h of co-treatment, the expression of TLR4, MyD88, MAPK, JNK, and NF-κB markers were upregulated significantly (2-6 times) in the LPS-treated groups compared to the untreated control in both HCS and WB experiments. Evidently, the HCS analysis revealed that MyD88, NF-κB, p38, and JNK were significantly downregulated in the H9C2 myotube in the AA treated groups. In HCS, the expression of NF-κB was downregulated in C2C12. Additionally, TLR4 expression was downregulated in both H9C2 and C2C12 myotubes in the WB experiment.

    DISCUSSION AND CONCLUSIONS: TLR4 marker expression in H9C2 and C2C12 myotubes was subsequently decreased by AA treatment, suggesting possible cardioprotective effects of AA.

    Matched MeSH terms: Myeloid Differentiation Factor 88/metabolism
  6. Haque MA, Jantan I, Harikrishnan H, Abdul Wahab SM
    Planta Med, 2018 Nov;84(17):1255-1264.
    PMID: 29906814 DOI: 10.1055/a-0637-9936
    Magnoflorine, a major bioactive metabolite isolated from Tinospora crispa, has been reported for its diverse biochemical and pharmacological properties. However, there is little report on its underlying mechanisms of action on immune responses, particularly on macrophage activation. In this study, we aimed to investigate the effects of magnoflorine, isolated from T. crispa on the pro-inflammatory mediators generation induced by LPS and the concomitant NF-κB, MAPKs, and PI3K-Akt signaling pathways in U937 macrophages. Differentiated U937 macrophages were treated with magnoflorine and the release of pro-inflammatory mediators was evaluated through ELISA, while the relative mRNA expression of the respective mediators was quantified through qRT-PCR. Correspondingly, western blotting was executed to observe the modulatory effects of magnoflorine on the expression of various markers related to NF-κB, MAPK and PI3K-Akt signaling activation in LPS-primed U937 macrophages. Magnoflorine significantly enhanced the upregulation of TNF-α, IL-1β, and PGE2 production as well as COX-2 protein expression. Successively, magnoflorine prompted the mRNA transcription level of these pro-inflammatory mediators. Magnoflorine enhanced the NF-κB activation by prompting p65, IκBα, and IKKα/β phosphorylation as well as IκBα degradation. Besides, magnoflorine treatments concentration-dependently augmented the phosphorylation of JNK, ERK, and p38 MAPKs as well as Akt. The immunoaugmenting effects were further confirmed by investigating the effects of magnoflorine on specific inhibitors, where the treatment with specific inhibitors of NF-κB, MAPKs, and PI3K-Akt proficiently blocked the magnoflorine-triggered TNF-α release and COX-2 expression. Magnoflorine furthermore enhanced the MyD88 and TLR4 upregulation. The results suggest that magnoflorine has high potential on augmenting immune responses.
    Matched MeSH terms: Myeloid Differentiation Factor 88/metabolism*
  7. Ismail EN, Jantan I, Vidyadaran S, Jamal JA, Azmi N
    BMC Complement Med Ther, 2020 Jul 01;20(1):202.
    PMID: 32611404 DOI: 10.1186/s12906-020-02961-0
    BACKGROUND: Phyllanthus amarus has been shown to attenuate lipopolysaccharide (LPS)-induced peripheral inflammation but similar studies in the central nervous system are scarce. The aim of the present study was to investigate the neuroprotective effects of 80% ethanol extract of P. amarus (EPA) in LPS-activated BV2 microglial cells.

    METHODS: BV2 microglial cells c for 24 h, pre-treated with EPA for 24 h prior to LPS induction for another 24 h. Surface expression of CD11b and CD40 on BV2 cells was analyzed by flow cytometry. ELISA was employed to measure the production of pro-inflammatory mediators i.e. nitric oxide (NO) and tumor necrosis factor (TNF)-α. Western blotting technique was used to determine the expression of inducible nitric oxide synthase (iNOS), myeloid differentiation protein 88 (MYD88), nuclear factor kappa B (NF-κB), caspase-1, and mitogen activated protein kinase (MAPK).

    RESULTS: Qualitative and quantitative analyses of the EPA using a validated ultra-high pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method indicated the presence of phyllanthin, hypophyllanthin, niranthin, ellagic acid, corilagin, gallic acid, phyltetralin, isolintetralin and geraniin. EPA suppressed the production of NO and TNFα in LPS-activated BV2 microglial cells. Moreover, EPA attenuated the expression of MyD88, NF-κB and MAPK (p-P38, p-JNK and p-ERK1/2). It also inhibited the expression of CD11b and CD40. EPA protected against LPS-induced microglial activation via MyD88 and NF-κB signaling in BV2 microglial cells.

    CONCLUSIONS: EPA demonstrated neuroprotective effects against LPS-induced microglial cells activation through the inhibition of TNFα secretion, iNOS protein expression and subsequent NO production, inhibition of NF-κB and MAPKs mediated by adapter protein MyD88 and inhibition of microglial activation markers CD11b and CD40.

    Matched MeSH terms: Myeloid Differentiation Factor 88/metabolism*
  8. Sinon SH, Rich AM, Parachuru VP, Firth FA, Milne T, Seymour GJ
    J Oral Pathol Med, 2016 Jan;45(1):28-34.
    PMID: 25865410 DOI: 10.1111/jop.12319
    The objective of this study was to investigate the expression of Toll-like receptors (TLR) and TLR-associated signalling pathway genes in oral lichen planus (OLP).
    Matched MeSH terms: Myeloid Differentiation Factor 88/genetics; Myeloid Differentiation Factor 88/metabolism
  9. Poh Yen K, Stanslas J, Zhang T, Li H, Wang X, Kok Meng C, et al.
    Bioorg Med Chem, 2021 11 01;49:116442.
    PMID: 34600241 DOI: 10.1016/j.bmc.2021.116442
    Acquired paclitaxel (PTX) chemoresistance in triple-negative breast cancer (TNBC) can be inferred from the overexpression of toll-like receptor 4 (TLR4) and myeloid differentiation primary response 88 (MyD88) proteins and the activation of the TLR4/MyD88 cascading signalling pathway. Finding a new inhibitor that can attenuate the activation of this pathway is a novel strategy for reducing PTX chemoresistance. In this study, a series of small molecule compounds were synthesised and tested in combination with PTX against TNBC cells. The trimethoxy-substituted compound significantly decreased MyD88 overexpression and improved PTX activity in MDA-MB-231TLR4+ cells but not in HCCTLR4- cells. On the contrary, the trifluoromethyl-substituted compound with PTX synergistically improved the growth inhibition in both TNBC subtypes. The fluorescence titrations indicated that both compounds could bind with MD2 with good and comparable binding affinities. This was further supported by docking analysis, in which both compounds fit perfectly well and form some critical binding interactions with MD2, an essential lipid-binding accessory to TLR4 involved in activating the TLR-4/MyD88-dependent pathway.
    Matched MeSH terms: Myeloid Differentiation Factor 88/antagonists & inhibitors*; Myeloid Differentiation Factor 88/genetics
  10. Haque MA, Jantan I, Harikrishnan H
    Int Immunopharmacol, 2018 Feb;55:312-322.
    PMID: 29310107 DOI: 10.1016/j.intimp.2018.01.001
    Zerumbone (ZER), isolated mainly from the Zingiber zerumbet (Z. zerumbet) rhizomes was found to be effective against numerous inflammatory and immune disorders, however, the molecular and biochemical mechanisms underlying its anti-inflammatory and immunosuppressive properties have not been well studied. This study was carried out to examine the profound effects of ZER on inflammatory mediated MyD88-dependent NF-κB/MAPK/PI3K-Akt signaling pathways in LPS-stimulated U937 human macrophages. ZER significantly suppressed the up-regulation pro-inflammatory mediators, TNF-α, IL-1β, PGE2, and COX-2 protein in LPS-induced human macrophages. Moreover, ZER significantly downregulated the phosphorylation of NF-κB (p65), IκBα, and IKKα/β as well as restored the degradation of IκBα. ZER correspondingly showed remarkable attenuation of the expression of Akt, JNK, ERK, and p38 MAPKs phosphorylation in a concentration-dependent manner. ZER also diminished the expression of upstream signaling molecules TLR4 and MyD88, which are prerequisite for the NF-κB, MAPK and PI3K-Akt activation. Additionally, quantification of relative gene expression of TNF-α, IL-1β, and COX-2 indicated that, at a higher dose (50μM), ZER significantly downregulated the elevated mRNA transcription levels of the stated pro-inflammatory markers in LPS-stimulated U937 macrophages. The strong suppressive effects of ZER on the activation of inflammatory markers in the macrophages via MyD88-dependent NF-κB/MAPK/PI3K-Akt signaling pathways suggest that ZER can be a preventive and potent therapeutic candidate for the management of various inflammatory-mediated immune disorders.
    Matched MeSH terms: Myeloid Differentiation Factor 88/metabolism
  11. Silvaraj S, Md Yasin IS, A Karim MM, Saad MZ
    Vaccines (Basel), 2020 Nov 06;8(4).
    PMID: 33171991 DOI: 10.3390/vaccines8040660
    Recombinant cell vaccines expressing the OmpK and DnaJ of Vibrio were developed and subsequently, a vaccination efficacy trial was carried out on juvenile seabass (~5 cm; ~20 g). The fish were divided into 5 groups of 50 fish per group, kept in triplicate. Groups 1 and 2 were injected with 107 CFU/mL of the inactivated recombinant cells vaccines, the pET-32/LIC-OmpK and pET-32/LIC-DnaJ, respectively. Group 3 was similarly injected with 107 CFU/mL of inactivated E. coli BL21 (DE3), Group 4 with 107 CFU/mL of formalin killed whole cells V. harveyi, and Group 5 with PBS solution. Serum, mucus, and gut lavage were used to determine the antibody levels before all fish were challenged with V. harveyi, V. alginolyticus, and V. parahemolyticus, respectively on day 15 post-vaccination. There was significant increase in the serum and gut lavage antibody titers in the juvenile seabass vaccinated with r-OmpK vaccine. In addition, there was an up-regulation for TLR2, MyD88, and MHCI genes in the kidney and intestinal tissues of r-OmpK vaccinated fish. At the same time, r-OmpK triggered higher expression level of interleukin IL-10, IL-8, IL-1ß in the spleen, intestine, and kidney compared to r-DnaJ. Overall, r-OmpK and r-DnaJ triggered protection by curbing inflammation and strengthening the adaptive immune response. Vaccinated fish also demonstrated strong cross protection against heterologous of Vibrio isolates, the V. harveyi, V. alginolyticus, and V. parahaemolyticus. The fish vaccinated with r-OmpK protein were completely protected with a relative per cent of survival (RPS) of 90 percent against V. harveyi and 100 percent against V. alginolyticus and V. parahaemolyticus. A semi-quantitative PCR detection of Vibrio spp. from the seawater containing the seabass also revealed that vaccination resulted in reduction of pathogen shedding. In conclusion, our results suggest r-OmpK as a candidate vaccine molecule against multiple Vibrio strain to prevent vibriosis in marine fish.
    Matched MeSH terms: Myeloid Differentiation Factor 88
  12. Kouwaki T, Fukushima Y, Daito T, Sanada T, Yamamoto N, Mifsud EJ, et al.
    Front Immunol, 2016;7:335.
    PMID: 27630638 DOI: 10.3389/fimmu.2016.00335
    The innate immune system is essential for controlling viral infection. Hepatitis B virus (HBV) persistently infects human hepatocytes and causes hepatocellular carcinoma. However, the innate immune response to HBV infection in vivo remains unclear. Using a tree shrew animal model, we showed that HBV infection induced hepatic interferon (IFN)-γ expression during early infection. Our in vitro study demonstrated that hepatic NK cells produced IFN-γ in response to HBV only in the presence of hepatic F4/80(+) cells. Moreover, extracellular vesicles (EVs) released from HBV-infected hepatocytes contained viral nucleic acids and induced NKG2D ligand expression in macrophages by stimulating MyD88, TICAM-1, and MAVS-dependent pathways. In addition, depletion of exosomes from EVs markedly reduced NKG2D ligand expression, suggesting the importance of exosomes for NK cell activation. In contrast, infection of hepatocytes with HBV increased immunoregulatory microRNA levels in EVs and exosomes, which were transferred to macrophages, thereby suppressing IL-12p35 mRNA expression in macrophages to counteract the host innate immune response. IFN-γ increased the hepatic expression of DDX60 and augmented the DDX60-dependent degradation of cytoplasmic HBV RNA. Our results elucidated the crucial role of exosomes in antiviral innate immune response against HBV.
    Matched MeSH terms: Myeloid Differentiation Factor 88
  13. Khan HU, Aamir K, Jusuf PR, Sethi G, Sisinthy SP, Ghildyal R, et al.
    Life Sci, 2021 Jan 15;265:118750.
    PMID: 33188836 DOI: 10.1016/j.lfs.2020.118750
    BACKGROUND: Lipopolysaccharide (LPS) is an endotoxin that leads to inflammation in many organs, including liver. It binds to pattern recognition receptors, that generally recognise pathogen expressed molecules to transduce signals that result in a multifaceted network of intracellular responses ending up in inflammation. Aim In this study, we used lauric acid (LA), a constituent abundantly found in coconut oil to determine its anti-inflammatory role in LPS-induced liver inflammation in Sprague Dawley (SD) rats.

    METHOD: Male SD rats were divided into five groups (n = 8), injected with LPS and thereafter treated with LA (50 and 100 mg/kg) or vehicle orally for 14 days. After fourteen days of LA treatment, all the groups were humanely killed to investigate biochemical parameters followed by pro-inflammatory cytokine markers; tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β. Moreover, liver tissues were harvested for histopathological studies and evaluation of targeted protein expression with western blot and localisation through immunohistochemistry (IHC).

    RESULTS: The study results showed that treatment of LA 50 and 100 mg/kg for 14 days were able to reduce the elevated level of pro-inflammatory cytokines, liver inflammation, and downregulated the expression of TLR4/NF-κB mediating proteins in liver tissues.

    CONCLUSION: These findings suggest that treatment of LA has a protective role against LPS-induced liver inflammation in rats, thus, warrants further in-depth investigation through mechanistic approaches in different study models.

    Matched MeSH terms: Myeloid Differentiation Factor 88/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links