Displaying all 10 publications

Abstract:
Sort:
  1. Sharma JN
    Gen. Pharmacol., 1988;19(2):177-87.
    PMID: 3280399
    The evidence presented here suggests strongly that the kallikreins-kininogens-kinins-kininase II system has most significant role in regulation of systemic BP. This system is involved in mediation and modulation of renin-angiotensin-aldosterone, PGS and vasopressin in the regulation of sodium water balance, renal hemodynamic and BP. Therefore, reduction in the kinin-formation due to high production of kininase II, and lower formation of tissue kallikrein might result in an increased release of vasoconstrictor angiotensin II on one side, and on the other side much reduced production of PGE, vasodilator. These changes might lead to deranged vascular smooth muscle structures and cell membrane functions, retention of sodium and water, increased plasma volume, and renovascular constriction. These physiological defects might result in the development of essential hypertension (Fig. 4). Although, it is possible now to treat hypertensive conditions with tissue kallikrein and kininase II inhibitors. These discoveries have opened up new vistas to research on the pharmacological applications of kallikreins-kininogens-kinins-kininases in human diseases.
    Matched MeSH terms: Kinins/physiology*
  2. Sharma JN
    Pharmacol. Toxicol., 1988 Nov;63(5):310-6.
    PMID: 3070519
    Matched MeSH terms: Kinins/physiology*
  3. Sharma JN
    Gen. Pharmacol., 1990;21(4):451-7.
    PMID: 2199299
    The lack of kinin formation in systemic circulation and in the renal system may lead to the pathogenesis of high blood pressure (hypertension). Angiotensin converting enzyme inhibitors are able to protect the kinin inactivation by kininase II, therefore, causing an accumulation of kinin. Although the concentrations of kinin in plasma after oral administration of ACE inhibitors are conflicting this is mainly due to methodological difficulties. Kinin receptor antagonists are becoming most reliable pharmacological probes for defining the molecular actions of kinin in several physiopathological states, and in the mechanism of actions of drugs which are dependent on the kinin system. The blood pressure lowering effect of ACE inhibitors can be antagonized by the pretreatment with kinin receptor antagonists. I have therefore proposed that the hypotensive action of ACE inhibitors may reflect the activation of kinin receptor. It is suggested that the development of compounds having protective properties on the kallikrein-kinin system might be therapeutically applicable as anti-hypertensive drugs.
    Matched MeSH terms: Kinins/physiology*
  4. Sharma JN, Buchanan WW
    Exp. Toxicol. Pathol., 1994 Dec;46(6):421-33.
    PMID: 7703672 DOI: 10.1016/S0940-2993(11)80053-9
    Excessive release of kinin (BK) in the synovial fluid can produce oedema, pain and loss of functions due to activation of B1 and B2 kinin receptors. Activation of the kinin forming system could be mediated via injury, trauma, coagulation pathways (Hageman factor and thrombin) and immune complexes. The activated B1 and B2 receptors might cause release of other powerful non-cytokine and cytokine mediators of inflammation, e.g., PGE2, PGI2, LTs, histamine, PAF, IL-1 and TNF, derived mainly from polymorphonuclear leukocytes, macrophages, endothelial cells and synovial tissue. These mediators are capable of inducing bone and cartilage damage, hypertrophic synovitis, vessel proliferation, inflammatory cell migration and, possibly, angiogenesis in pannus formation. These pathological changes, however, are not yet defined in the human model of chronic inflammation. The role of kinins and their interacting inflammatory mediators would soon start to clarify the detailed questions they revealed in clinical and experimental models of chronic inflammatory diseases. Several B1 and B2 receptor antagonists are being synthesized in an attempt to study the molecular functions of kinins in inflammatory processes, such as rheumatoid arthritis, periodontitis, inflammatory diseases of the gut and osteomyelitis. Future development of specific potent and stable B1 and B2 receptor antagonists or combined B1 and B2 antagonists with y-IFN might serve as a pharmacological basis for more effective treatment of joint inflammatory and related diseases.
    Matched MeSH terms: Kinins/metabolism*
  5. Sharma JN
    Eur J Rheumatol Inflamm, 1991;11(2):30-7.
    PMID: 1365470
    Components of the kallikrein-kininogen-kinin are activated in response to noxious stimuli (chemical, physical or bacterial), which may lead to excessive release of kinins in the synovial joints that may produce inflammatory joint disease. The inflammatory changes observed in synovial tissue may be due to activation of B2 receptors. Kinins also stimulate the synthesis of other pro-inflammatory agents (PGs, LTs, histamine, EDRF, PGI2 and PAF) in the inflamed joint. B2 receptor antagonists may provide valuable agents as new analgesic drugs. Further, it is suggested that substances directed to reduce the activation of KKS may provide a pharmacological basis for the synthesis of novel anti-rheumatic or anti-inflammatory drugs.
    Matched MeSH terms: Kinins/physiology*
  6. Sharma JN, Mohsin SS
    Exp Pathol, 1990;38(2):73-96.
    PMID: 1971600
    In recent years, numerous agents have been recognized as inflammatory mediators. In this review, however, we discuss only those having direct relevance to human inflammatory diseases These mediators are clinically important due to their proinflammatory properties such as vasodilatation, increased vascular permeability, pain and chemotaxis. They may lead to the fifth cardinal sign, loss of function in inflammatory diseases. Agonists and non-specific antagonists are used as pharmacological tools to investigate the inflammatory role of PGs, LTs, PAF, IL-1, histamine, complement, SP, PMN-leukocytes, and kallikrein-kininogen-kinin systems. Unfortunately, no compound is known which concurrently abolishes all actions and interactions of inflammatory mediators. Therefore it would be highly useful to promote efforts in developing selective and competitive antagonists against proinflammatory actions of these chemical mediators. This may help to a better understanding of the pathogenesis of inflammatory reactions, and it may also be useful for the therapy of inflammatory diseases.
    Matched MeSH terms: Kinins/physiology*
  7. Sharma JN
    Agents Actions Suppl., 1992;38 ( Pt 3):343-61.
    PMID: 1334358
    Kinins are potent mediators of rheumatoid inflammation. The components of the kinin-forming system are hyperactive in RA. Excessive release of kinins in the synovial fluid can produce oedema, pain and loss of functions due to activation of B1 and B2 receptors. These receptors could be stimulated via injury, trauma, coagulation pathways (Hageman factor and thrombin) and immune complexes. The activated B1 and B2 receptors might cause release of other powerful non-cytokines and cytokines mediators of inflammation, for example, PGE2, PGI2, LTs, histamine, PAF, IL-1 and TNF derived mainly from polymorphonuclear leukocytes, macrophages, endothelial cells and synovial tissue. These mediators are capable of inducing bone and cartilage damage, hypertrophic synovitis, vessels proliferation, inflammatory cells migration, and possibly angiogenesis in pannus formation. These pathological changes, however, are not yet defined in human model of chronic inflammation (RA). Hence, the role of kinin and its interacting inflammatory mediators would soon start to clarify the detailed questions they revealed in clinical and experimental models of chronic inflammatory joint diseases. Several B1 and B2 receptor antagonists are being synthesized in an attempt to study the molecular functions of kinins in inflammatory processes (RA, periodontitis and osteomyelitis), and they represent and important area for continued research in rheumatology. Future development of specific, potent and stable B1 and B2 receptor antagonists or combined B1 and B2 antagonists with y-IFN might serve as pharmacological basis of more effective rationally-based therapies for RA. This may lead to significant advances in our knowledge of the mechanisms and therapeutics of rheumatic diseases.
    Matched MeSH terms: Kinins/metabolism*
  8. Sharma JN, Uma K, Yusof AP
    Int J Cardiol, 1998 Feb 28;63(3):229-35.
    PMID: 9578349 DOI: 10.1016/s0167-5273(97)00329-x
    We investigated the cardiac tissue kallikrein and kininogen levels, left ventricular wall thickness and mean arterial blood pressure of Wistar Kyoto and spontaneously hypertensive rats with and without streptozotocin-induced diabetes. The mean arterial blood pressure was highly elevated (P<0.001) in Wistar Kyoto diabetic and spontaneously hypertensive diabetic rats as compared with their respective controls. The cardiac tissue kallikrein and kininogen levels were reduced significantly (P<0.001) in diabetic Wistar Kyoto, spontaneously hypertensive and diabetic spontaneously hypertensive compared with Wistar Kyoto control rats. In addition, the left ventricular thickness was found to be increased (P<0.001) in diabetic Wistar Kyoto and spontaneously hypertensive rats in the presence and in the absence of diabetes. Our results indicate that reduced activity of the kinin-forming system may be responsible for inducing left ventricular hypertrophy in the presence of raised mean arterial blood pressure in diabetic and hypertensive rats. Thus, the kinin-forming components might have a protective role against the development of left ventricular hypertrophy. The possible significance of these findings is discussed.
    Matched MeSH terms: Kinins/analysis
  9. Sharma JN
    Pharmacol Res, 1991 Feb;23(2):105-12.
    PMID: 1648214
    Components of kallikrein-kininogen-kinin are activated in response to noxious stimuli (chemical, physical or bacterial), which may lead to excessive release of kinins in the synovial joints that may produce inflammatory joint disease. The inflammatory changes observed in synovial tissue may be due to activation of B2 receptors. Kinins also stimulate the synthesis of other pro-inflammatory agents (PGs, LTs, histamine, EDRF, PGI2 and PAF) in the inflamed joint. B2 receptor antagonists may provide valuable new analgesic drugs. The mode of excessive kinin release in inflamed synovial joints leads to stimulation of pro-inflammatory actions of B2 kinin receptors. These properties could be antagonized by novel B2 receptor antagonists (see Fig. 4). Further, it is suggested that substances directed to reduce the activation of KKS may provide a pharmacological basis for the synthesis of novel antirheumatic or anti-inflammatory drugs.
    Matched MeSH terms: Kinins/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links