Displaying all 12 publications

Abstract:
Sort:
  1. Ang MY, Dutta A, Wee WY, Dymock D, Paterson IC, Choo SW
    Genome Biol Evol, 2016 10 05;8(9):2928-2938.
    PMID: 27540086
    Fusobacterium nucleatum is considered to be a key oral bacterium in recruiting periodontal pathogens into subgingival dental plaque. Currently F. nucleatum can be subdivided into five subspecies. Our previous genome analysis of F. nucleatum W1481 (referred to hereafter as W1481), isolated from an 8-mm periodontal pocket in a patient with chronic periodontitis, suggested the possibility of a new subspecies. To further investigate the biology and relationships of this possible subspecies with other known subspecies, we performed comparative analysis between W1481 and 35 genome sequences represented by the five known Fusobacterium subspecies. Our analyses suggest that W1481 is most likely a new F. nucleatum subspecies, supported by evidence from phylogenetic analyses and maximal unique match indices (MUMi). Interestingly, we found a horizontally transferred W1481-specific genomic island harboring the tripartite ATP-independent (TRAP)-like transporter genes, suggesting this bacterium might have a high-affinity transport system for the C4-dicarboxylates malate, succinate, and fumarate. Moreover, we found virulence genes in the W1481 genome that may provide a strong defense mechanism which might enable it to colonize and survive within the host by evading immune surveillance. This comparative study provides better understanding of F. nucleatum and the basis for future functional work on this important pathogen.
    Matched MeSH terms: Fusobacterium nucleatum/classification; Fusobacterium nucleatum/genetics*
  2. Butt J, Jenab M, Pawlita M, Overvad K, Tjonneland A, Olsen A, et al.
    Cancer Epidemiol Biomarkers Prev, 2019 Sep;28(9):1552-1555.
    PMID: 31481495 DOI: 10.1158/1055-9965.EPI-19-0313
    BACKGROUND: There is a lack of prospective data on the potential association of Fusobacterium nucleatum (F. nucleatum) and colorectal cancer risk. In this study, we assessed whether antibody responses to F. nucleatum are associated with colorectal cancer risk in prediagnostic serum samples in the European Prospective Investigation into Nutrition and Cancer (EPIC) cohort.

    METHODS: We applied a multiplex serology assay to simultaneously measure antibody responses to 11 F. nucleatum antigens in prediagnostic serum samples from 485 colorectal cancer cases and 485 matched controls. Conditional logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (CI).

    RESULTS: We observed neither a statistically significant colorectal cancer risk association for antibodies to individual F. nucleatum proteins nor for combined positivity to any of the 11 proteins (OR, 0.81; 95% CI, 0.62-1.06).

    CONCLUSIONS: Antibody responses to F. nucleatum proteins in prediagnostic serum samples from a subset of colorectal cancer cases and matched controls within the EPIC study were not associated with colorectal cancer risk.

    IMPACT: Our findings in prospectively ascertained serum samples contradict the existing literature on the association of F. nucleatum with colorectal cancer risk. Future prospective studies, specifically detecting F. nucleatum in stool or tissue biopsies, are needed to complement our findings.

    Matched MeSH terms: Fusobacterium nucleatum/pathogenicity*
  3. Ang MY, Dymock D, Tan JL, Thong MH, Tan QK, Wong GJ, et al.
    Genome Announc, 2014;2(1).
    PMID: 24526626 DOI: 10.1128/genomeA.00009-14
    Fusobacterium nucleatum is a bacterial species commonly detected in dental plaque within the human oral cavity, with some strains associated with periodontal disease, one of the most common clinical bacterial infections in the human body. The exact mechanisms of its pathogenesis are still not completely understood. In this study, we present the genome sequence and annotation of F. nucleatum strain W1481, isolated from a periodontal pocket of a dental patient at the University of Bristol, United Kingdom, the 16S rRNA gene sequencing of which showed it to be markedly different from the five previously named subspecies.
    Matched MeSH terms: Fusobacterium nucleatum
  4. Vankayala B, Anantula K, Saladi H, Gudugunta L, Basavarajaiah JM, Yadav SS
    J Conserv Dent, 2020 08 20;22(6):559-563.
    PMID: 33088065 DOI: 10.4103/JCD.JCD_221_19
    Aim: This study aims to evaluate the amount of apical extrusion of bacteria during root canal instrumentation using K3XF, Protaper Gold, Edge taper platinum, and Hyflex CM Rotary systems.

    Materials and Methods: Sixty freshly extracted maxillary incisors teeth collected in saline. Access cavity prepared and canals were made free of bacterial and pulp. The teeth were mounted on the bacteria collecting apparatus. Root canals were contaminated with the Fusobacterium Nucleatum (ATCC25586) and dried at 37°C for 24 h. In Group 1 (Control group): No instrumentation was done and biomechanical preparation done in all other groups with Group 2: Hand K-files, Group 3: Protaper gold, Group 4: K3XF, Group 5: Edge taper platinum, and Group 6: Hyflex CM rotary file systems. Then, the extrude was collected, and it is incubated in Mueller-Hinton agar for 24 h and the number of colony forming units were counted and statistical comparison was done using Kruskal-Wallis test and Mann-Whitney U test.

    Results: Hand K-files extruded more bacteria when compared to other four rotary systems, K3XF file system extruded least number of bacteria.

    Conclusion: All instrumentation techniques extruded intracanal bacteria apically. However, engine-driven nickel-titanium instruments extruded less bacteria than the manual technique. The K3XF rotary file system comparatively extruded less bacteria than other rotary file systems.

    Matched MeSH terms: Fusobacterium nucleatum
  5. Chew SS, Tan LT, Law JW, Pusparajah P, Goh BH, Ab Mutalib NS, et al.
    Cancers (Basel), 2020 Aug 13;12(8).
    PMID: 32823729 DOI: 10.3390/cancers12082272
    Colorectal cancer (CRC) is a global public health issue which poses a substantial humanistic and economic burden on patients, healthcare systems and society. In recent years, intestinal dysbiosis has been suggested to be involved in the pathogenesis of CRC, with specific pathogens exhibiting oncogenic potentials such as Fusobacterium nucleatum, Escherichia coli and enterotoxigenic Bacteroides fragilis having been found to contribute to CRC development. More recently, it has been shown that initiation of CRC development by these microorganisms requires the formation of biofilms. Gut microbial biofilm forms in the inner colonic mucus layer and is composed of polymicrobial communities. Biofilm results in the redistribution of colonic epithelial cell E-cadherin, increases permeability of the gut and causes a loss of function of the intestinal barrier, all of which enhance intestinal dysbiosis. This literature review aims to compile the various strategies that target these pathogenic biofilms and could potentially play a role in the prevention of CRC. We explore the potential use of natural products, silver nanoparticles, upconverting nanoparticles, thiosalicylate complexes, anti-rheumatic agent (Auranofin), probiotics and quorum-sensing inhibitors as strategies to hinder colon carcinogenesis via targeting colon-associated biofilms.
    Matched MeSH terms: Fusobacterium nucleatum
  6. Nor Adinar Baharuddin
    Malaysian Dental Journal, 2007;28(2):97-98.
    MyJurnal
    There are evidences that chronic oral infections are associated with cardiovascular disease (CVD). Periodontal disease is a common, mixed oral infection affecting the supporting structures around the teeth. It was reported that 75% of the adult population has gingivitis and 20% to 30% exhibits the severe destructive form of periodontitis. Although more than 500 bacterial species inhabit the human oral cavity, only a few Gram negative bacteria such as Prevotella intermedia, Fusobacterium nucleatum, Porphyromonas gingivalis, Tannerella forsythensis, Treponema denticola and Actinobacillus actinomycetamcomitans causes gingivitis and periodontitis. These periodontal pathogen occupy the subgingival space and organize as a bacterial biofilm. The bacterial biofilm will be in direct contact with host tissues along an ulcerated epithelial interface, called periodontal pocket. The break in the epithelial integrity directly exposes the host to bacteria and their products eg. lipopolysaccharide (LPS) endotoxin. (Copied from article).
    Matched MeSH terms: Fusobacterium nucleatum
  7. Shafiei Z, Shuhairi NN, Md Fazly Shah Yap N, Harry Sibungkil CA, Latip J
    PMID: 23049613 DOI: 10.1155/2012/825362
    Myristica fragrans Houtt is mostly cultivated for spices in Penang Island, Malaysia. The ethyl acetate and ethanol extracts of flesh, mace and seed of Myristica fragrans was evaluated the bactericidal potential against three Gram-positive cariogenic bacteria (Streptococcus mutans ATCC 25175, Streptococcus mitis ATCC 6249, and Streptococcus salivarius ATCC 13419) and three Gram-negative periodontopathic bacteria (Aggregatibacter actinomycetemcomitans ATCC 29522, Porphyromonas gingivalis ATCC 33277, and Fusobacterium nucleatum ATCC 25586). Antibacterial activities of the extracts was determined by twofold serial microdilution, with minimum inhibitory concentrations (MIC) ranging from 1.25 to 640 mg/mL and 0.075 to 40 mg/mL. The minimum bactericidal concentration (MBC) was obtained by subculturing method. Among all extracts tested, ethyl acetate extract of flesh has the highest significant inhibitory effects against Gram-positive and Gram-negative bacteria with mean MIC value ranging from 0.625 to 1.25 ± 0.00 (SD) mg/mL; P = 0.017) and highest bactericidal effects at mean MBC value ranging from 0.625 mg/mL to 20 ± 0.00 (SD) mg/mL. While for seed and mace of Myristica fragrans, their ethanol extracts exhibited good antibacterial activity against both groups of test pathogens compared to its ethyl acetate extracts. All of the extracts of Myristica fragrans did not show any antibacterial activities against Fusobacterium nucleatum ATCC 25586. Thus, our study showed the potential effect of ethyl acetate and ethanol extracts from flesh, seed and mace of Myristica fragrans to be new natural agent that can be incorporated in oral care products.
    Matched MeSH terms: Fusobacterium nucleatum
  8. Mutha NVR, Mohammed WK, Krasnogor N, Tan GYA, Choo SW, Jakubovics NS
    Mol Oral Microbiol, 2018 12;33(6):450-464.
    PMID: 30329223 DOI: 10.1111/omi.12248
    Cell-cell interactions between genetically distinct bacteria, known as coaggregation, are important for the formation of mixed-species biofilms such as dental plaque. Interactions lead to gene regulation in the partner organisms that may be critical for adaptation and survival in mixed-species biofilms. Here, gene regulation responses to coaggregation between Streptococcus gordonii and Fusobacterium nucleatum were studied using dual RNA-Seq. Initially, S. gordonii was shown to coaggregate strongly with F. nucleatum in buffer or human saliva. Using confocal laser scanning microscopy and transmission electron microscopy, cells of different species were shown to be evenly distributed throughout the coaggregate and were closely associated with one another. This distribution was confirmed by serial block face sectioning scanning electron microscopy, which provided high resolution three-dimensional images of coaggregates. Cell-cell sensing responses were analysed 30 minutes after inducing coaggregation in human saliva. By comparison with monocultures, 16 genes were regulated following coaggregation in F. nucleatum whereas 119 genes were regulated in S. gordonii. In both species, genes involved in amino acid and carbohydrate metabolism were strongly affected by coaggregation. In particular, one 8-gene operon in F. nucleatum encoding sialic acid uptake and catabolism was up-regulated 2- to 5-fold following coaggregation. In S. gordonii, a gene cluster encoding functions for phosphotransferase system-mediated uptake of lactose and galactose was down-regulated up to 3-fold in response to coaggregation. The genes identified in this study may play key roles in the development of mixed-species communities and represent potential targets for approaches to control dental plaque accumulation.
    Matched MeSH terms: Fusobacterium nucleatum/physiology*
  9. Osman MA, Neoh HM, Ab Mutalib NS, Chin SF, Mazlan L, Raja Ali RA, et al.
    Sci Rep, 2021 02 03;11(1):2925.
    PMID: 33536501 DOI: 10.1038/s41598-021-82465-0
    Dysbiosis of the gut microbiome has been associated with the pathogenesis of colorectal cancer (CRC). We profiled the microbiome of gut mucosal tissues from 18 CRC patients and 18 non-CRC controls of the UKM Medical Centre (UKMMC), Kuala Lumpur, Malaysia. The results were then validated using a species-specific quantitative PCR in 40 CRC and 20 non-CRC tissues samples from the UMBI-UKMMC Biobank. Parvimonas micra, Fusobacterium nucleatum, Peptostreptococcus stomatis and Akkermansia muciniphila were found to be over-represented in our CRC patients compared to non-CRC controls. These four bacteria markers distinguished CRC from controls (AUROC = 0.925) in our validation cohort. We identified bacteria species significantly associated (cut-off value of > 5 fold abundance) with various CRC demographics such as ethnicity, gender and CRC staging; however, due to small sample size of the discovery cohort, these results could not be further verified in our validation cohort. In summary, Parvimonas micra, Fusobacterium nucleatum, Peptostreptococcus stomatis and Akkermansia muciniphila were enriched in our local CRC patients. Nevertheless, the roles of these bacteria in CRC initiation and progression remains to be investigated.
    Matched MeSH terms: Fusobacterium nucleatum/isolation & purification
  10. Drewes JL, White JR, Dejea CM, Fathi P, Iyadorai T, Vadivelu J, et al.
    PMID: 29214046 DOI: 10.1038/s41522-017-0040-3
    Colorectal cancer (CRC) remains the third most common cancer worldwide, with a growing incidence among young adults. Multiple studies have presented associations between the gut microbiome and CRC, suggesting a link with cancer risk. Although CRC microbiome studies continue to profile larger patient cohorts with increasingly economical and rapid DNA sequencing platforms, few common associations with CRC have been identified, in part due to limitations in taxonomic resolution and differences in analysis methodologies. Complementing these taxonomic studies is the newly recognized phenomenon that bacterial organization into biofilm structures in the mucus layer of the gut is a consistent feature of right-sided (proximal), but not left-sided (distal) colorectal cancer. In the present study, we performed 16S rRNA gene amplicon sequencing and biofilm quantification in a new cohort of patients from Malaysia, followed by a meta-analysis of eleven additional publicly available data sets on stool and tissue-based CRC microbiota using Resphera Insight, a high-resolution analytical tool for species-level characterization. Results from the Malaysian cohort and the expanded meta-analysis confirm that CRC tissues are enriched for invasive biofilms (particularly on right-sided tumors), a symbiont with capacity for tumorigenesis (Bacteroides fragilis), and oral pathogens including Fusobacterium nucleatum, Parvimonas micra, and Peptostreptococcus stomatis. Considered in aggregate, species from the Human Oral Microbiome Database are highly enriched in CRC. Although no detected microbial feature was universally present, their substantial overlap and combined prevalence supports a role for the gut microbiota in a significant percentage (>80%) of CRC cases.
    Matched MeSH terms: Fusobacterium nucleatum
  11. Azizan N, Mohd Said S, Zainal Abidin Z, Jantan I
    Molecules, 2017 Dec 05;22(12).
    PMID: 29206142 DOI: 10.3390/molecules22122135
    In this study, the essential oils of Orthosiphon stamineus Benth and Ficus deltoidea Jack were evaluated for their antibacterial activity against invasive oral pathogens, namely Enterococcus faecalis, Streptococcus mutans, Streptococcus mitis, Streptococcus salivarius, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Fusobacterium nucleatum. Chemical composition of the oils was analyzed using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The antibacterial activity of the oils and their major constituents were investigated using the broth microdilution method (minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC)). Susceptibility test, anti-adhesion, anti-biofilm, checkerboard and time-kill assays were also carried out. Physiological changes of the bacterial cells after exposure to the oils were observed under the field emission scanning electron microscope (FESEM). O. stamineus and F. deltoidea oils mainly consisted of sesquiterpenoids (44.6% and 60.9%, respectively), and β-caryophyllene was the most abundant compound in both oils (26.3% and 36.3%, respectively). Other compounds present in O. stamineus were α-humulene (5.1%) and eugenol (8.1%), while α-humulene (5.5%) and germacrene D (7.7%) were dominant in F. deltoidea. The oils of both plants showed moderate to strong inhibition against all tested bacteria with MIC and MBC values ranging 0.63-2.5 mg/mL. However, none showed any inhibition on monospecies biofilms. The time-kill assay showed that combination of both oils with amoxicillin at concentrations of 1× and 2× MIC values demonstrated additive antibacterial effect. The FESEM study showed that both oils produced significant alterations on the cells of Gram-negative bacteria as they became pleomorphic and lysed. In conclusion, the study indicated that the oils of O. stamineus and F. deltoidea possessed moderate to strong antibacterial properties against the seven strains pathogenic oral bacteria and may have caused disturbances of membrane structure or cell wall of the bacteria.
    Matched MeSH terms: Fusobacterium nucleatum/drug effects; Fusobacterium nucleatum/growth & development; Fusobacterium nucleatum/isolation & purification
  12. Basri DF, Tan LS, Shafiei Z, Zin NM
    PMID: 22203875 DOI: 10.1155/2012/632796
    The galls of Quercus infectoria are commonly used in Malay traditional medicine to treat wound infections after childbirth. In India, they are employed traditionally as dental applications such as that in treatment of toothache and gingivitis. The aim of the present study was to evaluate the antibacterial activity of galls of Quercus infectoria Olivier against oral bacteria which are known to cause dental caries and periodontitis. Methanol and acetone extracts were screened against two Gram-positive bacteria (Streptococcus mutans ATCC 25175 and Streptococcus salivarius ATCC 13419) and two Gram-negative bacteria (Porphyromonas gingivalis ATCC 33277 and Fusobacterium nucleatum ATCC 25586). The screening test of antibacterial activity was performed using agar-well diffusion method. Subsequently, minimum inhibitory concentration (MIC) was determined by using twofold serial microdilution method at a concentration ranging between 0.01 mg/mL and 5 mg/mL. Minimum bactericidal concentration (MBC) was obtained by subculturing microtiter wells which showed no changes in colour of the indicator after incubation. Both extracts showed inhibition zones which did not differ significantly (P < 0.05) against each tested bacteria. Among all tested bacteria, S. salivarius was the most susceptible. The MIC ranges for methanol and acetone extracts were the same, between 0.16 and 0.63 mg/mL. The MBC value, for methanol and acetone extracts, was in the ranges 0.31-1.25 mg/mL and 0.31-2.50 mg/mL, respectively. Both extracts of Q. infectoria galls exhibited similar antibacterial activity against oral pathogens. Thus, the galls may be considered as effective phytotherapeutic agents for the prevention of oral pathogens.
    Matched MeSH terms: Fusobacterium nucleatum
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links