Ectonucleotidases, a well-known superfamily of plasma membrane located metalloenzymes plays a central role in mediating the process of purinergic cell signaling. Major functions performed by these enzymes include the hydrolysis of extracellular nucleosides and nucleotides which are considered as important cell-signaling molecules. Any (patho)-physiologically induced disruption in this purinergic cell signaling leads to several disorders, hence these enzymes are important drug targets for therapeutic purposes. Among the major challenges faced in the design of inhibitors of ectonucleotidases, an important one is the lack of selective inhibitors. Access to highly selective inhibitors via a facile synthetic route will not only be beneficial therapeutically, but will also lead to an increase in our understanding of intricate interplay between members of ectonucleotidase enzymes in relation to their selective activation and/or inhibition in different cells and tissues. Herein we describe synthesis of highly selective inhibitors of human intestinal alkaline phosphatase (h-IAP) and human tissue non-specific alkaline phosphatase (h-TNAP), containing chromone sulfonamide and sulfonylhydrazone scaffolds. Compound 1c exhibited highest (and most selective) h-IAP inhibition activity (h-IAP IC50 = 0.51 ± 0.20 µM; h-TNAP = 36.5%) and compound 3k showed highest activity and selective inhibition against h-TNAP (h-TNAP IC50 = 1.41 ± 0.10 µM; h-IAP = 43.1%). These compounds were also evaluated against another member of ectonucleotidase family, that is rat and human ecto-5'-nucleotidase (r-e5'NT and h-e5'NT). Some of the compounds exhibited excellent inhibitory activity against ecto-5'-nucleotidase. Compound 2 g exhibited highest inhibition against h-e5'NT (IC50 = 0.18 ± 0.02 µM). To rationalize the interactions with the binding site, molecular docking studies were carried out.
Four new chromone alkaloids, chrotacumines A-D (1-4), consisting of a 5,7-dihydroxy-2-methylchromone, an N-Me piperidine ring, and an ester side chain were isolated from Dysoxylum acutangulum, and their structures including absolute configurations were elucidated on the basis of spectroscopic data interpretation including 2D NMR, CD spectra, and X-ray analysis. The known compound rohitukine (5) showed moderate cytotoxicity against human HL-60 promyelocytic leukemia and HCT-116 colon cancer cells.
Vasorelaxation activity guided separation of the methanol extract of Calophyllum scriblitifolium bark led to the isolation of 6 chromanones (calofolic acids A-F, 1-6). Their structures were elucidated by 1D and 2D NMR spectroscopy, and their absolute configurations were investigated by a combination of CD spectroscopy and DFT calculation. All isolated chromanones showed dose-dependent vasorelaxation activity on isolated rat aorta.
Four new chromone alkaloids, chrotacumines G-J (1-4), have been isolated from the barks of Dysoxylum acutangulum. Their structures and absolute configurations were elucidated on the basis of NMR and CD data. Chrotacumines G and J (1 and 4) showed osteoclast differentiation inhibitory activity in a dose dependent manner.
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes chikungunya infection in humans. Despite the widespread distribution of CHIKV, no antiviral medication or vaccine is available against this virus. Therefore, it is crucial to find an effective compound to combat CHIKV. We aimed to predict the possible interactions between non-structural protein 3 (nsP) of CHIKV as one of the most important viral elements in CHIKV intracellular replication and 3 potential flavonoids using a computational approach. The 3-dimensional structure of nsP3 was retrieved from the Protein Data Bank, prepared and, using AutoDock Vina, docked with baicalin, naringenin and quercetagetin as ligands. The first-rated ligand with the strongest binding affinity towards the targeted protein was determined based on the minimum binding energy. Further analysis was conducted to identify both the active site of the protein that reacts with the tested ligands and all of the existing intermolecular bonds. Compared to the other ligands, baicalin was identified as the most potential inhibitor of viral activity by showing the best binding affinity (-9.8 kcal/mol). Baicalin can be considered a good candidate for further evaluation as a potentially efficient antiviral against CHIKV.
Components of kallikrein-kininogen-kinin are activated in response to noxious stimuli (chemical, physical or bacterial), which may lead to excessive release of kinins in the synovial joints that may produce inflammatory joint disease. The inflammatory changes observed in synovial tissue may be due to activation of B2 receptors. Kinins also stimulate the synthesis of other pro-inflammatory agents (PGs, LTs, histamine, EDRF, PGI2 and PAF) in the inflamed joint. B2 receptor antagonists may provide valuable new analgesic drugs. The mode of excessive kinin release in inflamed synovial joints leads to stimulation of pro-inflammatory actions of B2 kinin receptors. These properties could be antagonized by novel B2 receptor antagonists (see Fig. 4). Further, it is suggested that substances directed to reduce the activation of KKS may provide a pharmacological basis for the synthesis of novel antirheumatic or anti-inflammatory drugs.
This study examined the effects of PI3K and AMPK signalling pathway inhibitors on leptin-induced adverse effects on rat spermatozoa. Sprague-Dawley rats, aged 14-16 weeks, were randomised into control, leptin-, leptin + dorsomorphin (AMPK inhibitor)-, and leptin+LY294002 (PI3K inhibitor)-treated groups with six rats per group. Leptin was given once daily for 14 days via the intraperitoneal (i.p.) route at a dose of 60 ug kg-1 body weight. Rats in the leptin and inhibitor-treated groups received concurrently either dorsomorphin (5 mg kg-1 day-1 ) or LY294002 (1.2 mg kg-1 day-1 ) i.p. for 14 days. Controls received 0.1 ml of normal saline. Upon completion, sperm count, sperm morphology, seminiferous tubular epithelial height (STEH), seminiferous tubular diameter (STD), 8-hydroxy-2-deoxyguanosine (8-OHdG) and phospho-Akt/total Akt ratio were estimated. Data were analysed using ANOVA. Sperm count, STEH and STD were significantly lower, while the percentage of spermatozoa with abnormal morphology and the level of 8-OHdG were significantly higher in rats treated with leptin and leptin + dorsomorphin when compared to those in controls and LY294002-treated rats. Testicular phospho-Akt/total Akt ratio was significantly higher in leptin and leptin + LY294002-treated rats. In conclusion, LY294002 prevents leptin-induced changes in rat sperm parameters, suggesting the potential role of the PI3K signalling pathway in the adverse effects of leptin on sperm parameters.
Current research is based on the identification of novel inhibitors of α-amylase enzyme. For that purpose, new hybrid molecules of hydrazinyl thiazole substituted chromones 5-27 were synthesized by multi-step reaction and fully characterized by various spectroscopic techniques such as EI-MS, HREI-MS, 1H-NMR and 13C-NMR. Stereochemistry of the iminic bond was confirmed by NOESY analysis of a representative molecule. All compounds 5-27 along with their intervening intermediates 1-4, were screened for in vitro α-amylase inhibitory, DPPH and ABTS radical scavenging activities. All compounds showed good inhibition potential in the range of IC50 = 2.186-3.405 µM as compared to standard acarbose having IC50 value of 1.9 ± 0.07 µM. It is worth mentioning that compounds were also demonstrated good DPPH (IC50 = 0.09-2.233 µM) and ABTS (IC50 = 0.584-3.738 µM) radical scavenging activities as compared to standard ascorbic acid having IC50 = 0.33 ± 0.18 µM for DPPH and IC50 = 0.53 ± 0.3 µM for ABTS radical scavenging activities. In addition to that cytotoxicity of the compounds were checked on NIH-3T3 mouse fibroblast cell line and found to be non-toxic. In silico studies were performed to rationalize the binding mode of compounds (ligands) with the active site of α-amylase enzyme.
Goniothalamus macrophyllus (Blume) Hook. f. & Thoms. is a plant widely distributed in Malaysia. The aim of this study is to identify compounds from the roots of G. macrophyllus. The ground roots were extracted with aqueous methanol and partitioned sequentially with n-hexane, chloroform and butanol. Purification from this extracts afforded six compounds with two new compounds, namely goniolandrene-A (1), -B (2). The absolute configuration of goniolandrene B (2) was established by circular dichrosim. The compounds were cytotoxic against the P388 cells with IC50 values ranging from 0.42 to 160 μM. Goniothalamin (3) exhibited the highest inhibition of 0.42 μM.
A facile stereoselective synthesis of novel dispiro indeno pyrrolidine/pyrrolothiazole-thiochroman hybrids has been achieved by 1,3-dipolar cycloaddition of azomethine ylides, generated in situ from ninhydrin and sarcosine/thiaproline, on a series of 3-benzylidenethiochroman-4-ones. The synthesised compounds were screened for their antimycobacterial, anticancer and AchE inhibition activities. Compound 4l (IC50 1.07μM) has been found to exhibit the most potent antimycobacterial activity compared to cycloserine (12 times), pyrimethamine (37 times) and ethambutol (IC50 <1.56μM) and 6l (IC50=2.87μM) is more active than both cycloserine (4 times) and pyrimethamine (12 times). Three compounds, 4a, 6b and 6i, display good anticancer activity against CCRF-CEM cell lines. Compounds 6g and 4g display maximum AchE inhibitory activity with IC50 values of 1.10 and 1.16μmol/L respectively.