METHODS: We did a randomised, controlled, assessor-masked trial at ten Australian hospitals. Our hypothesis was CRBSI equivalence for central venous access devices and non-inferiority for peripheral arterial catheters (both 2% margin). Adults and children with expected greater than 24 h central venous access device-peripheral arterial catheter use were randomly assigned (1:1; stratified by hospital, catheter type, and intensive care unit or ward) by a centralised, web-based service (concealed before allocation) to infusion set replacement every 7 days, or 4 days. This included crystalloids, non-lipid parenteral nutrition, and medication infusions. Patients and clinicians were not masked, but the primary outcome (CRBSI) was adjudicated by masked infectious diseases physicians. The analysis was modified intention to treat (mITT). This study is registered with the Australian New Zealand Clinical Trials Registry ACTRN12610000505000 and is complete.
FINDINGS: Between May 30, 2011, and Dec, 9, 2016, from 6007 patients assessed, we assigned 2944 patients to 7-day (n=1463) or 4-day (n=1481) infusion set replacement, with 2941 in the mITT analysis. For central venous access devices, 20 (1·78%) of 1124 patients (7-day group) and 16 (1·46%) of 1097 patients (4-day group) had CRBSI (absolute risk difference [ARD] 0·32%, 95% CI -0·73 to 1·37). For peripheral arterial catheters, one (0·28%) of 357 patients in the 7-day group and none of 363 patients in the 4-day group had CRBSI (ARD 0·28%, -0·27% to 0·83%). There were no treatment-related adverse events.
INTERPRETATION: Infusion set use can be safely extended to 7 days with resultant cost and workload reductions.
FUNDING: Australian National Health and Medical Research Council.
Methods: We searched 4 electronic databases (Medline, the Cochrane Central Register of Controlled Trials, Embase, CINAHL) and internet sources for randomized controlled trials, ongoing clinical trials, and unpublished studies up to August 2016. Studies that assessed CVCs with antimicrobial impregnation with nonimpregnated catheters or catheters with another impregnation were included. Primary outcomes were clinically diagnosed sepsis, catheter-related bloodstream infection (CRBSI), and all-cause mortality. We performed a network meta-analysis to estimate risk ratio (RR) with 95% confidence interval (CI).
Results: Sixty studies with 17255 catheters were included. The effects of 14 impregnations were investigated. Both CRBSI and catheter colonization were the most commonly evaluated outcomes. Silver-impregnated CVCs significantly reduced clinically diagnosed sepsis compared with silver-impregnated cuffs (RR, 0.54 [95% CI, .29-.99]). When compared to no impregnation, significant CRBSI reduction was associated with minocycline-rifampicin (RR, 0.29 [95% CI, .16-.52]) and silver (RR, 0.57 [95% CI, .38-.86]) impregnations. No impregnations significantly reduced all-cause mortality. For catheter colonization, significant decreases were shown by miconazole-rifampicin (RR, 0.14 [95% CI, .05-.36]), 5-fluorouracil (RR, 0.34 [95% CI, .14-.82]), and chlorhexidine-silver sulfadiazine (RR, 0.60 [95% CI, .50-.72]) impregnations compared with no impregnation. None of the studies evaluated antibiotic/antiseptic resistance as the outcome.
Conclusions: Current evidence suggests that the minocycline-rifampicin-impregnated CVC appears to be the most effective in preventing CRBSI. However, its overall benefits in reducing clinical sepsis and mortality remain uncertain. Surveillance for antibiotic resistance attributed to the routine use of antimicrobial-impregnated CVCs should be emphasized in future trials.