Displaying all 4 publications

Abstract:
Sort:
  1. El-Seedi HR, Azeem M, Khalil NS, Sakr HH, Khalifa SAM, Awang K, et al.
    Exp Appl Acarol, 2017 Sep;73(1):139-157.
    PMID: 28864886 DOI: 10.1007/s10493-017-0165-3
    Due to the role of Ixodes ricinus (L.) (Acari: Ixodidae) in the transmission of many serious pathogens, personal protection against bites of this tick is essential. In the present study the essential oils from 11 aromatic Egyptian plants were isolated and their repellent activity against I. ricinus nymphs was evaluated Three oils (i.e. Conyza dioscoridis L., Artemisia herba-alba Asso and Calendula officinalis L.) elicited high repellent activity in vitro of 94, 84.2 and 82%, respectively. The most active essential oil (C. dioscoridis) was applied in the field at a concentration of 6.5 µg/cm2 and elicited a significant repellent activity against I. ricinus nymphs by 61.1%. The most repellent plants C. dioscoridis, C. officinalis and A. herba-alba yielded essential oils by 0.17, 0.11 and 0.14%, respectively. These oils were further investigated using gas chromatography-mass spectrometry analysis. α-Cadinol (10.7%) and hexadecanoic acid (10.5%) were the major components of C. dioscoridis whereas in C. officinalis, α-cadinol (21.2%) and carvone (18.2%) were major components. Artemisia herba-alba contained piperitone (26.5%), ethyl cinnamate (9.5%), camphor (7.7%) and hexadecanoic acid (6.9%). Essential oils of these three plants have a potential to be used for personal protection against tick bites.
    Matched MeSH terms: Artemisia/chemistry*
  2. Soon L, Ng PQ, Chellian J, Madheswaran T, Panneerselvam J, Gupta G, et al.
    J Environ Pathol Toxicol Oncol, 2019;38(3):205-216.
    PMID: 31679308 DOI: 10.1615/JEnvironPatholToxicolOncol.2019029397
    Artemisia vulgaris is a traditional Chinese herb believed to have a wide range of healing properties; it is traditionally used to treat numerous health ailments. The plant is commonly called mugwort or riverside wormwood. The plant is edible, and in addition to its medicinal properties, it is also used as a culinary herb in Asian cooking in the form of a vegetable or in soup. The plant has garnered the attention of researchers in the past few decades, and several research studies have investigated its biological effects, including antioxidant, anti-inflammatory, anticancer, hypolipidemic, and antimicrobial properties. In this review, various studies on these biological effects are discussed along with the tests conducted, compounds involved, and proposed mechanisms of action. This review will be of interest to the researchers working in the field of herbal medicine, pharmacology, medical sciences, and immunology.
    Matched MeSH terms: Artemisia/chemistry*
  3. Abiri R, Silva ALM, de Mesquita LSS, de Mesquita JWC, Atabaki N, de Almeida EB, et al.
    Food Res Int, 2018 07;109:403-415.
    PMID: 29803465 DOI: 10.1016/j.foodres.2018.03.072
    Artemisia vulgaris is one of the important medicinal plant species of the genus Artemisia, which is usually known for its volatile oils. The genus Artemisia has become the subject of great interest due to its chemical and biological diversity as well as the discovery and isolation of promising anti-malarial drug artemisinin. A. vulgaris has a long history in treatment of human ailments by medicinal plants in various parts of the world. This medicinal plant possesses a broad spectrum of therapeutic properties including: anti-malarial, anti-inflammatory, anti-hypertensive, anti-oxidant, anti-tumoral, immunomodulatory, hepatoprotective, anti-spasmodic and anti-septic. These activities are mainly attributed to the presence of various classes of secondary metabolites, including flavonoids, sesquiterpene lactones, coumarins, acetylenes, phenolic acids, organic acids, mono- and sesquiterpenes. Studies related to A. vulgaris morphology, anatomy and phytochemistry has gained a significant interest for better understanding of production and accumulation of therapeutic compounds in this species. Recently, phytochemical and pharmacological investigations have corroborated the therapeutic potential of bioactive compounds of A. vulgaris. These findings provided further evidence for gaining deeper insight into the identification and isolation of novel compounds, which act as alternative sources of anti-malarial drugs in a cost-effective manner. Considering the rising demand and various medical applications of A. vulgaris, this review highlights the recent reports on the chemistry, biological activities and biotechnological interventions for controlled and continuous production of bioactive compounds from this plant species.
    Matched MeSH terms: Artemisia/chemistry*
  4. Salhi N, Mohammed Saghir SA, Terzi V, Brahmi I, Ghedairi N, Bissati S
    Biomed Res Int, 2017;2017:7526291.
    PMID: 29226147 DOI: 10.1155/2017/7526291
    Aim: This study investigated the antifungal properties of aqueous extracts obtained from indigenous plants that grow spontaneously in the Northern Sahara of Algeria. The activities of these plants in controlling two fungal species that belong to Fusarium genus were evaluated in an in vitro assay.

    Materials and Methods: Fresh aerial parts of four plant species (Artemisia herba alba, Cotula cinerea, Asphodelus tenuifolius, and Euphorbia guyoniana) were collected for the preparation of aqueous extracts. Two levels of dilution (10% and 20%) of the pure extracts were evaluated against Fusarium graminearum and Fusarium sporotrichioides.

    Results: The results of this study revealed that the A. herba alba, C. cinerea, A. tenuifolius, and E. guyoniana aqueous extracts are effective at both concentrations of 10% and 20% for the Fusarium mycelia growth inhibition. In particular, A. tenuifolius extract is effective against F. graminearum, whereas F. sporotrichioides mycelium growth is strongly affected by the E. guyoniana 20% extract. The phytochemical characterization of the compositions of the aqueous extracts has revealed that the presence of some chemical compounds (tannins, flavonoids, saponins, steroids, and alkaloids) is likely to be responsible for the antifungal activities sought.

    Conclusion: The antifungal properties of A. herba alba, C. cinerea, A. tenuifolius, and E. guyoniana make these plants of potential interest for the control of fungi affecting both wheat yield and safety.

    Matched MeSH terms: Artemisia/chemistry*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links