Displaying all 4 publications

Abstract:
Sort:
  1. Sinding MS, Gopalakrishan S, Vieira FG, Samaniego Castruita JA, Raundrup K, Heide Jørgensen MP, et al.
    PLoS Genet, 2018 11;14(11):e1007745.
    PMID: 30419012 DOI: 10.1371/journal.pgen.1007745
    North America is currently home to a number of grey wolf (Canis lupus) and wolf-like canid populations, including the coyote (Canis latrans) and the taxonomically controversial red, Eastern timber and Great Lakes wolves. We explored their population structure and regional gene flow using a dataset of 40 full genome sequences that represent the extant diversity of North American wolves and wolf-like canid populations. This included 15 new genomes (13 North American grey wolves, 1 red wolf and 1 Eastern timber/Great Lakes wolf), ranging from 0.4 to 15x coverage. In addition to providing full genome support for the previously proposed coyote-wolf admixture origin for the taxonomically controversial red, Eastern timber and Great Lakes wolves, the discriminatory power offered by our dataset suggests all North American grey wolves, including the Mexican form, are monophyletic, and thus share a common ancestor to the exclusion of all other wolves. Furthermore, we identify three distinct populations in the high arctic, one being a previously unidentified "Polar wolf" population endemic to Ellesmere Island and Greenland. Genetic diversity analyses reveal particularly high inbreeding and low heterozygosity in these Polar wolves, consistent with long-term isolation from the other North American wolves.
    Matched MeSH terms: Wolves/genetics*
  2. Kabir M, Hameed S, Ali H, Bosso L, Din JU, Bischof R, et al.
    PLoS One, 2017;12(11):e0187027.
    PMID: 29121089 DOI: 10.1371/journal.pone.0187027
    Habitat suitability models are useful to understand species distribution and to guide management and conservation strategies. The grey wolf (Canis lupus) has been extirpated from most of its historic range in Pakistan primarily due to its impact on livestock and livelihoods. We used non-invasive survey data from camera traps and genetic sampling to develop a habitat suitability model for C. lupus in northern Pakistan and to explore the extent of connectivity among populations. We detected suitable habitat of grey wolf using a maximum entropy approach (Maxent ver. 3.4.0) and identified suitable movement corridors using the Circuitscape 4.0 tool. Our model showed high levels of predictive performances, as seen from the values of area under curve (0.971±0.002) and true skill statistics (0.886±0.021). The main predictors for habitat suitability for C. lupus were distances to road, mean temperature of the wettest quarter and distance to river. The model predicted ca. 23,129 km2 of suitable areas for wolf in Pakistan, with much of suitable habitat in remote and inaccessible areas that appeared to be well connected through vulnerable movement corridors. These movement corridors suggest that potentially the wolf range can expand in Pakistan's Northern Areas. However, managing protected areas with stringent restrictions is challenging in northern Pakistan, in part due to heavy dependence of people on natural resources. The habitat suitability map provided by this study can inform future management strategies by helping authorities to identify key conservation areas.
    Matched MeSH terms: Wolves/genetics
  3. Sinding MS, Gopalakrishnan S, Ramos-Madrigal J, de Manuel M, Pitulko VV, Kuderna L, et al.
    Science, 2020 06 26;368(6498):1495-1499.
    PMID: 32587022 DOI: 10.1126/science.aaz8599
    Although sled dogs are one of the most specialized groups of dogs, their origin and evolution has received much less attention than many other dog groups. We applied a genomic approach to investigate their spatiotemporal emergence by sequencing the genomes of 10 modern Greenland sled dogs, an ~9500-year-old Siberian dog associated with archaeological evidence for sled technology, and an ~33,000-year-old Siberian wolf. We found noteworthy genetic similarity between the ancient dog and modern sled dogs. We detected gene flow from Pleistocene Siberian wolves, but not modern American wolves, to present-day sled dogs. The results indicate that the major ancestry of modern sled dogs traces back to Siberia, where sled dog-specific haplotypes of genes that potentially relate to Arctic adaptation were established by 9500 years ago.
    Matched MeSH terms: Wolves/genetics
  4. Ramos-Madrigal J, Sinding MS, Carøe C, Mak SST, Niemann J, Samaniego Castruita JA, et al.
    Curr Biol, 2021 01 11;31(1):198-206.e8.
    PMID: 33125870 DOI: 10.1016/j.cub.2020.10.002
    Extant Canis lupus genetic diversity can be grouped into three phylogenetically distinct clades: Eurasian and American wolves and domestic dogs.1 Genetic studies have suggested these groups trace their origins to a wolf population that expanded during the last glacial maximum (LGM)1-3 and replaced local wolf populations.4 Moreover, ancient genomes from the Yana basin and the Taimyr peninsula provided evidence of at least one extinct wolf lineage that dwelled in Siberia during the Pleistocene.35 Previous studies have suggested that Pleistocene Siberian canids can be classified into two groups based on cranial morphology. Wolves in the first group are most similar to present-day populations, although those in the second group possess intermediate features between dogs and wolves.67 However, whether this morphological classification represents distinct genetic groups remains unknown. To investigate this question and the relationships between Pleistocene canids, present-day wolves, and dogs, we resequenced the genomes of four Pleistocene canids from Northeast Siberia dated between >50 and 14 ka old, including samples from the two morphological categories. We found these specimens cluster with the two previously sequenced Pleistocene wolves, which are genetically more similar to Eurasian wolves. Our results show that, though the four specimens represent extinct wolf lineages, they do not form a monophyletic group. Instead, each Pleistocene Siberian canid branched off the lineage that gave rise to present-day wolves and dogs. Finally, our results suggest the two previously described morphological groups could represent independent lineages similarly related to present-day wolves and dogs.
    Matched MeSH terms: Wolves/genetics*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links