Displaying publications 1 - 20 of 24 in total

Abstract:
Sort:
  1. Yew HZ, Berekally TL, Richards LC
    Aust Dent J, 2013 Dec;58(4):468-77.
    PMID: 24320904 DOI: 10.1111/adj.12099
    The aim of this study was to evaluate colour stability upon exposure to spices of a nano-filled and a micro-hybrid resin composite finished either with Sof-Lex™ discs (SLD) or against plastic strips (PS).
    Matched MeSH terms: Tamarindus*
  2. Owodunni AA, Ismail S, Olaiya NG
    Environ Sci Pollut Res Int, 2023 Dec;30(60):124677-124685.
    PMID: 35678970 DOI: 10.1007/s11356-022-21353-0
    Chemical coagulants like alum, ferric salts, and polyacrylamide derivatives are helpful in water treatment. However, the long-term detrimental effects of chemical coagulants on humans and the environment require alternative research for natural coagulants. This study used novel leguminous (green beans (GB), pigeon pea (PP)), fruit seeds (Tamarind indica (TI), and date palm (DS)) as coagulants to remove turbidity. The seeds were powdered, and the crude active coagulants were extracted with distilled water and a 1 M NaCl solution. The result showed that PP's distilled water extract had the highest turbidity removal of 81.12%, while DS had the least performance of 62.54%. The NaCl extract of PP had the highest removal (94.62%), followed by TI (76.08%). This study found the optimum doses for GB, TI, PP, and DS to be 50, 40, 10, and 70 mL/L, with their optimum pH at 3, 1, 3, and 1, respectively. The FTIR spectra confirmed the existence of -OH, -NH, COOH, C = O, C-C, and C-H peaks, indicating the presence of protein-specific functional groups supporting their potential use as coagulants. Therefore, PP would have been used based on turbidity performance; however, due to their nutritional value, TI and DS are suitable seeds for the coagulation-flocculation treatment of turbid water because they are waste materials.
    Matched MeSH terms: Tamarindus*
  3. Lasekan O, See NS
    Food Chem, 2015 Feb 1;168:561-5.
    PMID: 25172748 DOI: 10.1016/j.foodchem.2014.07.112
    Nineteen odour-active compounds were quantified in three black velvet tamarind fruit species. Calculation of the odour activity values (OAVs) of the odorants showed that differences in odour profiles of the tamarinds were mainly caused by linalool, limonene, 4-hydroxy-2,5-dimethyl-3(2H)-furanone, nonanal, and (Z)-3-hexenal. On the basis of their high OAVs, cis-linalool oxide (furanoid), geranyl acetone, and cinnamyl acetate were identified as other potent odorants in the three tamarinds. Sensory studies revealed very distinct aroma profiles, which are characteristic of these types of fruits. While the Dialiumguineense elicited floral, flowery, caramel-like notes, the other two species were dominated by leaf-like, caramel, and green notes.
    Matched MeSH terms: Tamarindus/metabolism; Tamarindus/chemistry*
  4. Chigurupati S, Vijayabalan S, Selvarajan KK, Aldubayan M, Alhowail A, Mani V, et al.
    Curr Pharm Biotechnol, 2020;21(5):384-389.
    PMID: 31657678 DOI: 10.2174/1389201020666191028105325
    BACKGROUND: Endophytic bacteria produce various bioactive secondary metabolites, which benefit human health. Tamarindus indica L. is well known for its medicinal value in human health care. Several studies have reported on its biological effects from various parts of T. indica, but only a few studies have been devoted to examining the biological activity of endophytes of T. indica.

    OBJECTIVES: In the present study, an endophyte was isolated from the leaves of T. indica and screened for its antimicrobial potential.

    METHODS: The selected endophyte was identified by 16s rRNA partial genome sequencing and investigated for their antimicrobial potency. The preliminary phytochemical tests were conducted for the affirmation of phytoconstituents in the endophytic crude ethyl acetate extract of T. indica (TIM) and total phenolic content was performed. The antimicrobial potential of TIM was evaluated against human pathogenic ATCC gram-positive and gram-negative bacterial strains.

    RESULTS: TIM exhibited an appreciable amount of gallic acid equivalent phenolic content (21.6 ± 0.04 mg GAE/g of crude extract). TIM showed the Minimum Inhibitory Concentration (MIC) at 250 μg/mL and Minimum Bactericidal Concentration (MBC) at 500 μg/mL among the selected human pathogenic ATCC strains. At MIC of 500 μg/mL, TIM displayed a significant zone of inhibition against P. aeruginosa and N. gonorrhoeae.

    CONCLUSION: The results from our study highlighted for the first time the antimicrobial potential of endophytic bacterial strain Bacillus velezensis in T. indica leaves and it could be further explored as a source of natural antimicrobial agents.

    Matched MeSH terms: Tamarindus/microbiology*; Tamarindus/chemistry*
  5. Taufiq, A.M., Yusof, Y. A.,, Chin, N.L., Othman, S.H., Serikbaeva, A., Aziz, M.G.
    MyJurnal
    Tamarind and pineapple fruit pulps and powders were assessed based on their physicochemical properties such as crude protein, crude fibre, fat, ash, moisture content, water activity (Aw), particle shape, particle size distribution, and density. Both of the fruit powders were subjected to a similar spray-drying process with the addition of 10% w/v of maltodextrin. The nutritional value in terms of crude protein (0.33 - 0.60%), moisture content (4.80% - 25.31%), crude fiber (16.92 - 79.92%), and fat (0.40 - 0.63%) for both fruit pulp and powders shows a significant difference at p
    Matched MeSH terms: Tamarindus
  6. Soraya Ismail, Nur Farhana Azmi, Khin, Maung Maung, Oothuman, Pakeer
    MyJurnal
    Snakebite has been categorised as a ‘neglected tropical disease’ by WHO
    in 2009 and it affects mainly the poorer countries like Africa and Asia. The standard
    treatment for snake envenomation is the anti-snake venom medication which can be
    very expensive, not readily available and specific against a snake species. This study
    was conducted to screen the phytochemical compounds of Tamarindus indica seed
    extract (TSE) and its in-vitro effects on snake venom of three snake species; namely
    Daboia russelli, Naja kaouthia and Ophiophagus hannah. (Copied from article).
    Matched MeSH terms: Tamarindus
  7. Razavi M, Nyamathulla S, Karimian H, Moghadamtousi SZ, Noordin MI
    Molecules, 2014;19(9):13909-31.
    PMID: 25197930 DOI: 10.3390/molecules190913909
    The gastroretentive dosage form of famotidine was modified using tamarind seed powders to prolong the gastric retention time. Tamarind seeds were used in two different forms having different swelling and gelling properties: with husk (TSP) or without husk (TKP). TKP (TKP1 to TKP 6) and TSP (TSP1 to TSP 6) series were prepared using tamarind powder:xanthan in the ratios of 5:0, 4:1, 3:2, 2:3, 1:4, 0:5, respectively. The matrix tablets were prepared by the wet granulation method and evaluated for pharmacopoeial requirements. TKP2 was the optimum formulation as it had a short floating lag time (FLT<30 s) and more than 98.5% drug release in 12 h. The dissolution data were fitted to popular mathematical models to assess the mechanism of drug release, and the optimum formulation showed a predominant first order release and diffusion mechanism. It was concluded that the TKP2 prepared using tamarind kernel powder:xanthan (4:1) was the optimum formulation with shortest floating lag time and more than 90% release in the determined period of time.
    Matched MeSH terms: Tamarindus/chemistry*
  8. Chong UR, Abdul-Rahman PS, Abdul-Aziz A, Hashim OH, Mat-Junit S
    Biomed Res Int, 2013;2013:459017.
    PMID: 24455694 DOI: 10.1155/2013/459017
    The fruit pulp extract of Tamarindus indica has been reported for its antioxidant and hypolipidemic properties. In this study, the methanol extract of T. indica fruit pulp was investigated for its effects on the abundance of HepG2 cell lysate proteins. Cell lysate was extracted from HepG2 cells grown in the absence and presence of the methanol extract of T. indica fruit pulp. Approximately 2500 spots were resolved using two-dimensional gel electrophoresis and the abundance of 20 cellular proteins was found to be significantly reduced. Among the proteins of reduced abundance, fourteen, including six proteins involved in metabolism (including ethanolamine phosphate cytidylyltransferase), four mitochondrial proteins (including prohibitin and respiratory chain proteins), and four proteins involved in translation and splicing, were positively identified by mass spectrometry and database search. The identified HepG2 altered abundance proteins, when taken together and analyzed by Ingenuity Pathways Analysis (IPA) software, are suggestive of the effects of T. indica fruit pulp extract on metabolism and inflammation, which are modulated by LXR/RXR. In conclusion, the methanol fruit pulp extract of T. indica was shown to cause reduced abundance of HepG2 mitochondrial, metabolic, and regulatory proteins involved in oxidative phosphorylation, protein synthesis, and cellular metabolism.
    Matched MeSH terms: Tamarindus/chemistry*
  9. Alshelmani MI, Loh TC, Foo HL, Lau WH, Sazili AQ
    ScientificWorldJournal, 2013;2013:689235.
    PMID: 24319380 DOI: 10.1155/2013/689235
    Nine aerobic cellulolytic bacterial cultures were obtained from the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Culture (DSMZ) and the American Type Culture Collection (ATCC). The objectives of this study were to characterize the cellulolytic bacteria and to determine the optimum moisture ratio required for solid state fermentation (SSF) of palm kernel cake (PKC). The bacteria cultures were grown on reconstituted nutrient broth, incubated at 30°C and agitated at 200 rpm. Carboxymethyl cellulase, xylanase, and mannanase activities were determined using different substrates and after SSF of PKC. The SSF was conducted for 4 and 7 days with inoculum size of 10% (v/w) on different PKC concentration-to-moisture ratios: 1 : 0.2, 1 : 0.3, 1 : 0.4, and 1 : 0.5. Results showed that Bacillus amyloliquefaciens 1067 DSMZ, Bacillus megaterium 9885 ATCC, Paenibacillus curdlanolyticus 10248 DSMZ, and Paenibacillus polymyxa 842 ATCC produced higher enzyme activities as compared to other bacterial cultures grown on different substrates. The cultures mentioned above also produced higher enzyme activities when they were incubated under SSF using PKC as a substrate in different PKC-to-moisture ratios after 4 days of incubation, indicating that these cellulolytic bacteria can be used to degrade and improve the nutrient quality of PKC.
    Matched MeSH terms: Tamarindus/microbiology*
  10. Khalid S, Shaik Mossadeq WM, Israf DA, Hashim P, Rejab S, Shaberi AM, et al.
    Med Princ Pract, 2010;19(4):255-9.
    PMID: 20516700 DOI: 10.1159/000312710
    To study the effects of Tamarindus indica L. aqueous fruit extract on the antinociceptive activities in rodent models.
    Matched MeSH terms: Tamarindus*
  11. Foo KY, Lee LK, Hameed BH
    Bioresour Technol, 2013 Apr;133:599-605.
    PMID: 23501142 DOI: 10.1016/j.biortech.2013.01.097
    The preparation of tamarind fruit seed granular activated carbon (TSAC) by microwave induced chemical activation for the adsorptive treatment of semi-aerobic landfill leachate has been attempted. The chemical and physical properties of TSAC were examined. A series of column tests were performed to determine the breakthrough characteristics, by varying the operational parameters, hydraulic loading rate (5-20 mL/min) and adsorbent bed height (15-21 cm). Ammonical nitrogen and chemical oxygen demand (COD), which provide a prerequisite insight into the prediction of leachate quality was quantified. Results illustrated an encouraging performance for the adsorptive removal of ammonical nitrogen and COD, with the highest bed capacity of 84.69 and 55.09 mg/g respectively, at the hydraulic loading rate of 5 mL/min and adsorbent bed height of 21 cm. The dynamic adsorption behavior was satisfactory described by the Thomas and Yoon-Nelson models. The findings demonstrated the applicability of TSAC for the adsorptive treatment of landfill leachate.
    Matched MeSH terms: Tamarindus/chemistry*
  12. Malviya R, Jha S, Fuloria NK, Subramaniyan V, Chakravarthi S, Sathasivam K, et al.
    Polymers (Basel), 2021 Feb 18;13(4).
    PMID: 33670569 DOI: 10.3390/polym13040610
    The rheological properties of tamarind seed polymer are characterized for its possible commercialization in the food and pharmaceutical industry. Seed polymer was extracted using water as a solvent and ethyl alcohol as a precipitating agent. The temperature's effect on the rheological behavior of the polymeric solution was studied. In addition to this, the temperature coefficient, viscosity, surface tension, activation energy, Gibbs free energy, Reynolds number, and entropy of fusion were calculated by using the Arrhenius, Gibbs-Helmholtz, Frenkel-Eyring, and Eotvos equations, respectively. The activation energy of the gum was found to be 20.46 ± 1.06 kJ/mol. Changes in entropy and enthalpy were found to be 23.66 ± 0.97 and -0.10 ± 0.01 kJ/mol, respectively. The calculated amount of entropy of fusion was found to be 0.88 kJ/mol. A considerable decrease in apparent viscosity and surface tension was produced when the temperature was raised. The present study concludes that the tamarind seed polymer solution is less sensitive to temperature change in comparison to Albzia lebbac gum, Ficus glumosa gum and A. marcocarpa gum. This study also concludes that the attainment of the transition state of viscous flow for tamarind seed gum is accompanied by bond breaking. The excellent physicochemical properties of tamarind seed polymers make them promising excipients for future drug formulation and make their application in the food and cosmetics industry possible.
    Matched MeSH terms: Tamarindus
  13. Malviya R, Tyagi A, Fuloria S, Subramaniyan V, Sathasivam K, Sundram S, et al.
    Polymers (Basel), 2021 May 10;13(9).
    PMID: 34068768 DOI: 10.3390/polym13091531
    Transdermal drug delivery is used to deliver a drug by eliminating the first-pass metabolism, which increases the bioavailability of the drug. The present study aims to formulate the chitosan-tamarind seed polysaccharide composite films and evaluate for the delivery of protein/peptide molecules. Nine formulations were prepared and evaluated by using different parameters, such as physical appearance, folding endurance, thickness of film, surface pH, weight variation, drug content, surface morphology, percentage moisture intake and uptake, drug release kinetics, and drug permeability. The film weight variance was observed between 0.34 ± 0.002 to 0.47 ± 0.003 g. The drug level of the prepared films was found to be between 96 ± 1.21 and 98 ± 1.33μg. Their intake of moisture ranged between 2.83 ± 0.002 and 3.76 ± 0.001 (%). The moisture absorption of the films ranged from 5.33 ± 0.22 to 10.02 ± 0.61 (%). SEM images revealed a smooth film surface, while minor cracks were found in the film after permeation tests. During the first 4 days, drug release was between 13.75 ± 1.64% and 22.54 ± 1.34% and from day 5 to day 6, it was between 72.67 ± 2.13% and 78.33 ± 3.13%. Drug permeation during the first 4 days was 15.78 ± 1.23 %. Drug permeation (%) during the first 4 days was between 15.78 ± 1.23 and 22.49 ± 1.29 and from day 5 to day 6, it was between 71.49 ± 3.21 and 77.93 ± 3.20.
    Matched MeSH terms: Tamarindus
  14. Chunglok W, Utaipan T, Somchit N, Lertcanawanichakul M, Sudjaroen Y
    Sains Malaysiana, 2014;43:689-696.
    It is of interest that seeds and pericarps of tropical fruits contain phytochemicals being the components of various biological activities for beneficial health effects. This study was aimed to evaluate antioxidant and anticancer activities of the methanolic extracts from seeds and pericarps of three selected tropical fruits including Rambutan (Nephelium lappaceum L.), Litchi (Litchi chinensis Sonn.) and Tamarind (Tamarindus indica L.). Total phenolic content was determined by using the Folin-Ciocalteu method. Antioxidant capacity was evaluated based on the ability of the fruit extracts to scavenge ABTS and DPPH radicals. MTT reduction assay and Annexin V-FITC/PI staining were carried out for cytotoxicity and apoptosis induction, respectively. Total phenolic contents of the seeds and pericarps of the tropical fruits ranged from 104.60 to 501.95 mg/g DW. All extracts were found to have significant antioxidant activities. Among them, tamarind seed extract contained the highest total phenolic contents and possessed the highest antioxidant capacities. Tamarind seed extract showed the highest cytotoxicity to human mouth carcinoma (CLS-354) cells and had no toxicity to PBMCs. Staining with annexin V-FITC/PI showed that this apoptosis occurred early in this cell type with 10.0% of the cells undergoing apoptosis. Tamarind seed extract might have potential anticancer activity which could be attributed, in part, to selectively inhibit the growth of CLS-354 cells and induce apoptosis. This research finding would be valuable information to identify major constituents of the extracts and mechanisms underlying anticancer activity which could be attributed to dietary health supplements or cancer chemoprevention from fruits.
    Matched MeSH terms: Tamarindus
  15. Razali N, Aziz AA, Junit SM
    Genes Nutr, 2010 Dec;5(4):331-41.
    PMID: 21189869 DOI: 10.1007/s12263-010-0187-5
    Tamarindus indicaL. (T. indica) or locally known as asam jawa belongs to the family of Leguminosae. The fruit pulp had been reported to have antioxidant activities and possess hypolipidaemic effects. In this study, we attempted to investigate the gene expression patterns in human hepatoma HepG2 cell line in response to treatment with low concentration of the fruit pulp extracts. Microarray analysis using Affymetrix Human Genome 1.0 S.T arrays was used in the study. Microarray data were validated using semi-quantitative RT-PCR and real-time RT-PCR. Amongst the significantly up-regulated genes were those that code for the metallothioneins (MT1M, MT1F, MT1X) and glutathione S-transferases (GSTA1, GSTA2, GST02) that are involved in stress response. APOA4, APOA5, ABCG5 and MTTP genes were also significantly regulated that could be linked to hypolipidaemic activities of the T. indica fruit pulp.
    Matched MeSH terms: Tamarindus
  16. Maung KM, Lynn Z
    Trop Biomed, 2012 Dec;29(4):580-7.
    PMID: 23202603
    Snake bite has been regarded as an important health problem in Myanmar since early 1960's. In the recent years, there has been growing interest in alternative therapies and therapeutic use of natural products, especially those derive from plants. In Myanmar and Indian traditional medicine, various plants have used as a remedy for treating snake bite. The present study was carried out to evaluate the effects of alcohol extract of Tamarind (Tamarindus indica Linn.) seed on some biologic properties of Russell's viper (Daboia russelli siamensis) venom (RVV). The Phospholipase A2 (PLA2) enzyme, coagulase enzyme and caseinolytic enzyme activities of Russell's viper venom (RVV) were reduced when mixed and incubated with the extract. When the RVV and the different amount of extracts were preincubated and injected intramuscularly into mice, all of them survived, but all the mice in the control group died. On the other hand, when RVV were injected first followed by the extract into mice, all of them died. If the extract was injected near the site where Russell's viper venom was injected, all the mice survived for more than 24 hours and the survival time prolonged but they all died within 96 hours. In conclusion, according to the results obtained, the extract neutralizes some biologic properties of the Russell's viper venom and prolonged the survival time if the extract was injected near the site where the Russell's viper venom was injected.
    Matched MeSH terms: Tamarindus/chemistry*
  17. Lim CY, Junit SM, Aziz AA, Jayapalan JJ, Hashim OH
    Electrophoresis, 2018 12;39(23):2965-2973.
    PMID: 30280388 DOI: 10.1002/elps.201800258
    The hypolipidemic effects of Tamarindus indica fruit pulp extract (Ti-FPE) have been earlier reported but the underlying molecular mechanisms are still uncertain. In this study, hamsters fed with Ti-FPE, both in the absence and presence of high-cholesterol diet, were shown to have significantly reduced levels of serum triglyceride, LDL-C and total cholesterol. The Ti-FPE-fed non-hypercholesterolemic hamsters also showed significant enhanced levels of serum apolipoprotein A1, antithrombin III, transferrin and vitamin D binding protein. In diet-induced hypercholesterolemic hamsters, apolipoprotein A1, antithrombin III and transferrin, which were relatively low in levels, became significantly enhanced when the hamsters were fed with Ti-FPE. These Ti-FPE-fed hypercholesterolemic hamsters also showed significant higher levels of serum vitamin D binding protein. When the different treated groups of hamsters were analyzed for the levels of the four serum proteins by ELISA, similar altered abundance were detected. Ingenuity Pathway Analysis of the Ti-FPE modulated serum proteins singled out "Lipid metabolism, molecular transport, small molecule biochemistry" as the top network. Our results suggest that the hypolipidemic effects of Ti-FPE are associated with alterations of serum proteins that are known to be cardioprotective and involved in the metabolism of lipids. The MS data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD010232.
    Matched MeSH terms: Tamarindus/chemistry*
  18. Razavi M, Karimian H, Yeong CH, Fadaeinasab M, Khaing SL, Chung LY, et al.
    Drug Des Devel Ther, 2017;11:1-15.
    PMID: 28031701 DOI: 10.2147/DDDT.S115466
    This study aimed to formulate floating gastroretentive tablets containing metformin hydrochloric acid (HCl), using various grades of hydrogel such as tamarind powders and xanthan to overcome short gastric residence time of the conventional dosage forms. Different concentrations of the hydrogels were tested to determine the formulation that could provide a sustained release of 12 h. Eleven formulations with different ratios of tamarind seed powder/tamarind kernel powder (TKP):xanthan were prepared. The physical parameters were observed, and in vitro drug-release studies of the prepared formulations were carried out. Optimal formulation was assessed for physicochemical properties, thermal stability, and chemical interaction followed by in vivo gamma scintigraphy study. MKP3 formulation with a TKP:xanthan ratio of 3:2 was found to have 99.87% release over 12 h. Furthermore, in vivo gamma scintigraphy study was carried out for the optimized formulation in healthy New Zealand White rabbits, and the pharmacokinetic parameters of developed formulations were obtained. 153Sm2O3 was used to trace the profile of release in the gastrointestinal tract of the rabbits, and the drug release was analyzed. The time (Tmax) at which the maximum concentration of metformin HCl in the blood (Cmax) was observed, and it was extended four times for the gastroretentive formulation in comparison with the formulation without polymers. Cmax and the half-life were found to be within an acceptable range. It is therefore concluded that MKP3 is the optimal formulation for sustained release of metformin HCl over a period of 12 h as a result of its floating properties in the gastric region.
    Matched MeSH terms: Tamarindus/chemistry*
  19. Malviya R, Raj S, Fuloria S, Subramaniyan V, Sathasivam K, Kumari U, et al.
    Int J Nanomedicine, 2021;16:2533-2553.
    PMID: 33824590 DOI: 10.2147/IJN.S300991
    PURPOSE: The present study was intended to fabricate chitosan (Ch)-tamarind gum polysaccharide (TGP) polyelectrolyte complex stabilized cubic nanoparticles of simvastatin and evaluate their potential against human breast cancer cell lines.

    MATERIALS AND METHODS: The antisolvent precipitation method was used for formulation of nanoparticles. Factorial design (32) was utilized as a tool to analyze the effect of Ch and TGP concentration on particle size and entrapment efficiency of nanoparticles.

    RESULTS: Formulated nanoparticles showed high entrapment efficiency (67.19±0.42-83.36±0.23%) and small size (53.3-383.1 nm). The present investigation involved utilization of two biological membranes (egg and tomato) as biological barriers for drug release. The study revealed that drug release from tomato membranes was retarded (as compared to egg membranes) but the release pattern matched that of egg membranes. All formulations followed the Baker-Lansdale model of drug release irrespective of the two different biological barriers. Stability studies were carried out for 45 days and exhibited less variation in particle size as well as a reduction in entrapment efficiency. Simvastatin loaded PEC stabilized nanoparticles exhibited better control on growth of human breast cancer cell lines than simple simvastatin. An unusual anticancer effect of simvastatin nanoparticles is also supported by several other research studies.

    CONCLUSION: The present study involves first-time synthesis of Ch-TGP polyelectrolyte complex stabilized nanoparticles of simvastatin against MCF-7 cells. It recommends that, in future, theoretical modeling and IVIVC should be carried out for perfect designing of delivery systems.

    Matched MeSH terms: Tamarindus/chemistry*
  20. Chong UR, Abdul-Rahman PS, Abdul-Aziz A, Hashim OH, Junit SM
    PLoS One, 2012;7(6):e39476.
    PMID: 22724021 DOI: 10.1371/journal.pone.0039476
    The plasma cholesterol and triacylglycerol lowering effects of Tamarindus indica extract have been previously described. We have also shown that the methanol extract of T. indica fruit pulp altered the expression of lipid-associated genes including ABCG5 and APOAI in HepG2 cells. In the present study, effects of the same extract on the release of proteins from the cells were investigated using the proteomics approach.
    Matched MeSH terms: Tamarindus/chemistry*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links